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Simultaneous measurement of
liquid level and R.I. sensor using
POF based on twisted structure
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In this paper, a dual-parameter liquid level and refractive index (R.l.) sensor is fabricated using three
pieces of bare polymer optical fibers (POFs), which can independently and simultaneously sense the
liquid level and R.I. The proposed sensor design utilizes the twisted coupling technique, in which two
optical fibers are twisted and coupled with macro-bending. The liquid level measurement depends
on the coupling loss, where the light is transmitted to emission fiber (EF) and twisted with coupled
acceptor fiber (AF). The proposed liquid level sensor can measure depths up to 125 mm with a
sensitivity of 8.03 nW/mm. Moreover, R.l. sensing depends on the twisted coupled macro-bending
(TCMB) technique, where the EF generates bend loss and the AF couples the loss, where the coupled
power varies due to the transformation in R.. of coupling medium. The R.1. sensor revealing a notable
sensitivity of -2663%/RIU and an impressive resolution of 3.754 x 10~* in the different NaCl-saturated
liquids featuring R.l. range extending from 1.333 to 1.361. The experimental findings indicate the
sensor exhibits excellent stability and reliability. The sensor’s straightforward, comprehensive, and
cost-effective design enables its application in chemical, petroleum, and other industries.
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The simultaneous multiparameter sensing technique has become essential in several scientific and industrial fields
because it allows real-time monitoring, and various multiple parameters can be integrated into a single system.
This approach simplifies the monitoring procedure, reduces complexity, and lowers the costs associated with
deploying multiple sensors!. There have been significant advancements in multiparameter sensing applications
across various fields, including biological sensingz, temperature3, strain measurement?, pH detection®, liquid
level monitoring®, soil-nailing’ and bend or torque measurement evaluation®’. The capability to simultaneously
measure multiple parameters in real-time, referred to as simultaneous measurement sensing, has received less
attention and development compared to these other applications.

Liquid level and refractive index (RI) are crucial across scientific and industrial domains. R.I. sensor
investigates liquid composition and optical properties, offering insights about changes in solution concentrations
and chemical composition!®. Multiparameter sensing technique can achieve a deeper understanding of fluid
dynamics, mixing processes, and changes in composition. This has the potential to drive innovation across
multiple sectors such as chemical processing, pharmaceuticals, and environmental monitoring.

Fiber-based liquid level and R.I. sensors can be categorized according to their underlying measurement
principles. Among different methods, the various interferometer techniques used for sensing include Fabry-
Perot interferometers (FPI)!!, multimode interferometers'?, and Mach-Zehnder interferometers (MZI)'?, long-
period gratings (LPG)', and fiber Bragg gratings (FBG)'®, which depend on wavelength modulation and rely
on the wavelength of light as the liquid level or R.I. changes. The wavelength modulation technique is more
complex and requires more advanced measuring equipment'®!”. Despite the fact that the intensity modulation
utilizes light intensity, it changes as the liquid level, or R.L, varies'®!°. These intensity modulation-based sensors
are easier to implement because of their simple and straightforward measurement method. Therefore, intensity
modulation-based optical fiber sensors (OFS) are currently the most widely used for liquid level sensing.
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Fig. 1. (a) Basic step to fabricate sensor through fiber twisting, (b) sensor design for liquid level measuring
and (c) is R.L. sensor design using TCMB technique.

Polymer optical fiber (POF) offers more advantages compared to silica fiber*?*?!. Numerous studies
have improved techniques for measuring liquid level sensing. For example, Dong et al.?? fabricated a model
interferometer using a coreless D-shape fiber for liquid level sensing. Zhang et al.?* fabricated a liquid level sensor
that can only sense depth at different points using the coupling method. Another study proposed drilling micro-
holes in the POF for liquid level sensing?!. While Deng et al.?> presented an approach for continuous liquid level
sensing, they also used twisted tapered POFs. Liquid level can be measured by changing the coupling ratio with
respect to the variation of visible light intensity at two different nodes. Moreover, the effects of temperature, R.I,
and diameters of POF are analyzed.

A number of sensors have been proposed using various techniques in the literature to measure the liquid
level and R.I. For instance, a R.I. measuring technique based on a fiber ring laser utilizing a dual-FBG filter. The
fabrication of FBG filters was achieved with a combination of normal FBG and thinned FBG grating. Ujihara et
al.?® manufactured a tapered graded index per fluorinated POF by employing intense illumination propagation
inside fiber to create a R.I. sensor. Chen et al.?’ describe an optical fiber liquid level sensor that fixes R.I. by
cascading double multi-mode interferences with photonic crystal fiber and no core fiber. This method integrates
a liquid level sensor and a R.I. sensor, utilizing the first for detection and the second for R.I. compensation.
However, the cascading of multiple fibers introduces complexities in terms of manufacturing, alignment, and
stability. Ning et al.?® introduced a POF-based R.I. sensing probe from commercial POF by macro-bending effect
and side-polished it for R.I. measurement. The thermal heating method was used to achieve the micro-bending
structure of the POFs. De-Jun et al.?’ fabricated the D-shaped POF sensor, which uses a side-half-polishing
method for R.I. sensing. The influence of the surrounding environment and the evanescent wave generated
by the propagating light causes a reduction in optical transmission, which forms the basis of this operating
principle.

Another idea was put forward: Teng et al.® proposed a POF-based SPR sensing system for simultaneous
assessment of R.I. and liquid level. Similarly, Yang et al.3! proposed a liquid level and R.I. sensor using MZI

Scientific Reports | (2025) 15:1163 | https://doi.org/10.1038/s41598-024-84964-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

™ Vernier caliper

l m A~ Light source (660nm)

Emission
iber = (P;)

Power meter-1

Acceptor
fiber = (P,)

Photodetector

Computer

Pipette
’ Power meter-2

|

THORUAGS

[ M00USE

Photodetector

Liquid level

Fig. 2. The schematic drawing of experimental setup.

design utilizing a graded-index multimode fiber (GIMMF) sandwiched between the single-mode fibers and
multi-mode fibers. However, the necessity to adjust the length of the GIMMEF every time for liquid level
measurement hints that the sensor might not be ideal for continuous or real-time monitoring applications. The
POF-based surface plasmon resonance (SPR) sensor, featuring a side-polished and V-shaped groove structure,
for the multiparameter sensing of R.I. and temperature was also purposed this approach was more cost-efficient
than the other purpose multiparameter sensor®2. While these side polishing, multiple notches, and micro-hole
drilling in the POF are also proposed for multiparameter sensing of liquid level and R.I**34. However, drilling
holes, notches, or V-grooves in POF creates imperfection, vulnerability, and more scattering loss for intensity-
based sensors. They also add complexity to the setup, limiting their ability to provide high-resolution and precise
measurements. Therefore, there is ongoing research and development in the field of multiparameter sensing of
liquid level and R.I., with a focus on improving accuracy, response and high-resolution measurements.

In this paper, we propose an OFS for simultaneous measurement of liquid level and R.I. This sensor is based
on the twisted-coupled fiber technique for liquid level sensing, along with the twisted-coupled macro-bending
(TCMB) techniques used for R.I. sensing with a single LED source. The sensor structure utilizes three pieces of
POFs: one fiber attached to the light source, and the remaining two fibers for liquid level and R.I. sensing. This
technique is low-cost and easy to implement, making it suitable for various applications where multiparameter
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Fig. 3. Initial and final response of liquid level and R.I. sensor in liquid (RI=1.333).

sensing of liquid level and R.I. is required. Sensor fabrication and sensing phenomena are explained in the next
section, whereas the experimental results and their analysis are provided in the fourth section.

Sensor fabrication and sensing principles

Twisted coupled and TCMB technique

The proposed design for simultaneous measurement of liquid level and R.I. employs a method involving twisting
structures using POFs. In this setup, one fiber responsible for propagating light is attached to the LED source,
which is designated the emission fiber (EF). The remaining two fibers operate as acceptor fibers (AFs), each
with a unique function. The first AF is twisted with the EFE, and this twisting action forms the basis for detecting
changes in the liquid level. Essentially, the amount of light transferred between these fibers varies depending on
the liquid’s height, thus enabling liquid level measurement.

Concurrently, the second AF undergoes a dual treatment of twisting and being subjected to macro-bending.
This specific manipulation enables the fiber to demonstrate sensitivity towards variations in the R.I. of the
surrounding medium. When the R.I. varies, so does the light transmission pattern between the EF and this
second AF, allowing for R.I. measurement. Figure 1la depicts the method of twisting, and twisted coupled fiber
for liquid level sensing is shown in Fig. 1b, while Fig. 1c¢ demonstrates TCMB technique in coupled fibers for R.I.
sensing. However, to perform the dual sensing tasks, the arrangement and functioning of this sensing system
are visually represented in Fig. 2, providing a clear illustration of the fibers that are configured and interact. The
liquid level and R.I. sensors both utilize a twisting rate of 1 complete twist every 2 cm. This rate was chosen to
balance the light coupling effect between the fibers, ensuring effective power transfer for optimal sensitivity and
performance in both sensing applications.

TCMB technique for R.1. sensing

The proposed technique for fabricating a simultaneous measurement sensor capable of detecting dual parameters
with a single light source is based on the TCMB loss technique. This allows optical power coupling to detect R.I.
changes. This technique employs a twisting and coupling method to enable the coupling of the radiated power
from the EF, and then transmit this to the AF for R.I. measurement. Where the EF generates bend loss and the
AF couples the loss, this makes the R.I. sensor more sensitive to sense different refractive indices. It is widely
accepted that if the cores of two closely spaced fibers are close to one another, light in those fibers will become
optically coupled®. As light propagates through the twisted EE, some of it is lost due to the induced bend.
This lost light is then coupled into the AF, whose efficiency in capturing this light depends on the R.I. of the
surrounding medium. The closer the R.I. of the medium is to the core of the fibers, the more pronounced the
coupling effect becomes. This property makes the sensor highly sensitive to variations in the surrounding R.L
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Fig. 4. Individually response of Liquid level sensor in air (R.I. & 1) and ascending liquid level.

The sensor’s ability to detect variations in R.I. is enhanced by the deliberate design of the coupling structure,
which ensures that even small changes in the R.I. are captured by significant changes in the coupled power.

Although multimode optical fiber is nevertheless flexible enough to tolerate bending without significant loss,
italso has downsides, which include signal latency distortions as well as scattering of light losses. Several methods
were created to evaluate the macro-bending effects®®*”. To tackle these effects, ray tracing, beam propagation,
finite element, and numerical aperture techniques are used. Nevertheless, both beam propagation and finite
element techniques have constraints when it comes to attaining exceptional accuracy. On the other hand, the
numerical aperture method is useless for optimization purposes. The ray-tracing method is advantageous since
it requires low computational complexity and offers more precision compared to other methods. However,
the proposed R.I. sensor sensitivity is based on TCMB technique, which can be optimized for a particular
requirement. The optical configuration for measuring the R.L is founded on the TCMB phenomenon.

In proposed setup, we designate an input port P, for the incoming light. The twisted EF radiates light from
the light source, while the AF relies on the coupling of power loss for light propagation. The output power of the
EF at the throughput port is denoted as P, and the output power of the AF is referred to as the coupled port P..

0
To illustrate the coupling power resulting from bend loss, we employ Eq. (1)%:

1
1+<C;/%c>2 (1

Here, P_signifies the coupling power of the AE 7 is the this represents the R.I. of fiber core, where C represents
the coupling coeflicient derived as per Eq. (2):

P.=

)
oo \/U2K0 [W(;)}V:Kmvv) o)
(1-G=))

In this equation, W (%) denotes the extent of isolation among the fibers, d represents the physical space of both
coupled fibers, p denotes the core radius of the fibers, V is a dimensionless frequency defined as V.= U*+ W2, U
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Fig. 5. The response of sensor to ascending and descending liquid level.

is the mode propagation in the fibers and K is Bessel function of the with specific indices of fiber. § is defined as
b=1- (@)2 where n is R.I. of the fiber cladding and n_ is the R.I. of fiber core. Additionally, the coupling

Nco

length [ is determined by Eq. (3):

3)

Experimental setup

The proposed method was experimentally implemented and fabricated for the simultaneous measurement of
liquid level and R.I. The experimental setup utilizes three pieces of bare POF fiber. We specifically selected
Mitsubishi Step Index SK-40 fiber for its elastic, soft, and flexible nature*-*!. The fiber has a diameter of
1000 pm, featuring a core diameter of 980 pum, and the cladding has 20 um diameter, consisting of polymethyl-
methacrylate (PMMA) resin and a fluorinated polymer, and the core R.I. is 1.49. Notably, a larger core
diameter and a smaller cladding area result in a significant bending loss from side coupling. The experimental
arrangement involved using an LED light source (M660F1, Thorlabs) that operates at a wavelength of 660 nm,
along with two photodetectors (S151C, Thorlabs), and they were attached to optical power meters (PM100USB,
Thorlabs) connected to the front ends of the AFs to measure emitted energy. The schematic representation of the
experimental setup is illustrated in Fig. 2.

Two AFs were twisted separately on the EF to achieve dual-parameter functionality from a single EE. The first
twisting was terminated upon completion of the first loop and affixed to a vernier caliper depth meter secured
with glue. The front end of the first AF was coupled to power meter 1, ensuring stable measurement conditions.
Simultaneously, the other twisting fiber commenced with its front end-point coupled with power meter 2. The
distance between the untwisted EF, from the point where the liquid level sensor ended to the point where the
R.I sensor began, was 50 cm. For liquid sensing, the twisting length was 125 mm, with a total length of 1 m to
the power meter. For R.I. sensing, we used a 60 mm twisting length with a circular macro-bending region with
the bending radius of 8 mm, also with a total length of 1 m to the power meter.

The liquid level sensor measurement apparatus utilized in this study consisted of a twisted and coupled
OFS affixed to depth measurement tool of a vernier caliper with a maximum length of 150 mm, positioned
perpendicularly above the liquid surface. To ensure the initial liquid level position remained stable, the sensor
was slowly submerging into the liquid, which cover a range from 0 to 125 mm, in order to obtain accurate depth
readings. The R.I. measurement employed the TCMB method, as depicted in Fig. 1c, where light from the visible-
light source traversed through the first twist before the second twist commenced to fabricate the sensing region
for R.I. sensing. The end point of the twisted AF was connected to the power meter for R.I. sensing. Sodium
chloride solutions (NaCl) with varying concentrations were tested for their values using an Abbe refractometer,
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Liquid level sensor | Level ascent sensitivity (nW/mm) | Correlation coefficient (R?) | Level descent sensitivity (n"W/mm) | Correlation coefficient (R?)

Cycle 1

8.03 0.9982 8.03 0.9976

Cycle 2

7.96 0.9980 8.01 0.9985

Cycle 3

8.00 0.9983 8.04 0.9988

Cycle 4

8.01 0.9977 8.03 0.9986

Table 1. The results from Fig. 5.

yielding respective liquid R.I. values of 1.333, 1.340, 1.348, 1.353, and 1.361 for concentrations of 1 Mol/L, 1.5
Mol/L, 2 Mol/L, and 2.5 Mol/L, respectively, at room temperature 20 °C. The relationship between the liquids
RI and the concentration of a NaCl solution is described using a linear equation known as the Gladstone-Dale
Eq. (4):

B

R=,/A+ —=x
(5-0)?

(4)

where R is the R.I. of the solution, S is the NaCl concentration mol/L, A, B, and C are constants specific to the
solvent and the solute.

Results and discussion

The experiments were conducted for liquid level and R.I. measurement using the developed experimental
platform to demonstrate the practicality of the POF-based liquid level and R.I. sensor. Figure 3, presents the
initial response of both sensors, illustrating their performance individually in the liquid with an (RI=1.333).
The coupling power in both sensors remains relatively steady when exposed in the environment. The POF
sensor’s steady response in air (R.I. & 1) is due to the large contrast between the air and the fiber core (SK
40 core RI=1.49), which ensures efficient light confinement within the core through total internal reflection.
This contrast minimizes external disturbances and losses, maintaining a stable and consistent coupling power.
Conversely, when ascended in a liquid with a higher refractive induces, then reduced contrast leads to increased
coupling power loss and a more variable sensor response.

Sensor 1

The liquid level sensor can detect depths of 125 mm, which corresponds to the total length of the twisted
coupled fibers. This range allows the sensor to cover every measurement point as the liquid level either ascends
or descend. Figure 4, depicts the sensor’s response to the liquid level in both air (R.I. # 1) and liquid (R.I. =
1.333) at a temperature of 20 °C. As the liquid level changes, the coupled power with continuous level changing
and coupled power decreases linearly. Although, there is not such change in the air with the regression is settled
at (R2=0.9989). Therefore, the sensitivity is derived by subtracting the initial power coupling from the final
coupled power loss and then dividing this difference by the change in liquid level which drive as Eq. (5):

P;— P

5
L’nLtL:L' ( )

Sensitivity (nW/mm) =

where P denotes the final power coupling, P, signifies the initial power coupling,and L, ,_represents the variation
in the liquid level. According to the equation, it is evident that the coupling power exhibits an approximate linear
decreasing in coupled power loss trend with an ascent in the liquid level. The sensitivity of 8.03 nW/mm was
obtained for liquid level sensing.

Moreover, the four cycles of ascent and descent of the liquid level sensor are illustrated in Fig. 5. The rate
of level change is 2.08 mm/sec, with a measurement range extending to maximum. The experimental results
are presented in Table 1. It shows that a sensitivity with a mean value of 8.00+0.03 nW/mm level ascending,
and for the level descending 8.03 +0.01 nW/mm. This precise control allows for accurate monitoring of liquid
levels within the specified range. In the AF, a minimal coupled power loss occurs, which radiates at every level,
ensuring a consistent small amount of propagated power through coupling with the EE The coupling power loss
varies with continuous change in liquid levels, crucial for real-time monitoring applications. The variation in
coupling power loss corresponds to the continuous increase or decrease in the liquid levels. As depicted in Fig. 5,
the coupled power loss increases during the ascending of the liquid level due to an increase in transmission loss.
Conversely, during the descending of the coupled power increases, as shown in Fig. 5.

The temperature significantly impacts the sensor’s performance. The PMMA POF is sensitive to temperature,
while the SK-40 fiber has a specified temperature ranging from —55 °C to 70 °C as per the manufacturer’s
specifications. A comprehensive analysis of temperature dependence was conducted on the sensor design to
evaluate its performance in various environmental conditions shown in Fig. 6. The liquid level sensor was
ascended and descended into liquid with an (R.1.=1.333) and the beaker was positioned on a Kaisi 818 heating
apparatus, where the temperature varied between 20 °C and 60 °C at intervals of 20 °C. The results shown in
Fig. 6, The decrease in output power with increasing temperature can be attributed to variations in the liquid’s
R, leading to weakened containment of light rays and some shifting into radiation mode, causing a decrease
in power output.
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Fig. 6. Liquid level sensor ascended and descanted in liquid with different temperature °C.

Sensor 2

The sensor 2 is designated for R.I. sensing. The optical fiber setup consists of initially the twisted coupling
configuration for sensor 1, then followed by TCMB technique for sensor 2. Sensor 1 maintains the highest
power output, while there is a gradually decrease in power for the sensor 2. It should be emphasized that as
more sensors are added to the EF, the initial power coupling diminishes when more sensors are added. The
R.I sensors demonstrate with exponential response attributed to the macro-bend loss effect. Figure 7. shows
the different R.I. liquids sensing without TCMB effect and with TCMB effect. This TCMB technique exhibits a
high of linearity, with a correlation coefficient (R%) 0.99774 and increased sensitivity in comparison to not using
TCMB technique. The TCMB effect induces more coupling power loss for the R.I. sensor, thereby increasing its
sensitivity to even minor variations in the R.I. Having considered this, we have analyzed different bending radii
to evaluate their influence on sensor functionality as shown in Fig. 8.

The TCMB design is dependent on macro-bending sensing, leading to the transformation of a fiber’s core
mode into a radiation mode once it reaches a specific threshold of the bending radius. At this point, the fiber
experiences macro-bend radiation loss. This can cause more of the light to escape from the core into the cladding,
increasing interaction with the surrounding medium. Increased refraction at the boundary between the central
region and the outer layer in an optical fiber leads to the emission of some incident light from the EF. In
multimode fibers with extremely small bending radii, the light loss at the core-cladding boundary is insignificant
as a grated amount of power is directed towards the cladding, resulting in the creation of a significant cladding
mode. Figure 8. demonstrates the impact of various bending radii on the operational behavior of the sensor.
As the radius decreases, the fiber experiences increased bending loss. The analysis revealed that sensitivity is
enhanced with smaller bend radii 8 mm, leading to greater radiant illumination surrounding the bend area
and improved coupling of light in the AE. The radiated power can be determined with the equation P = P, x T,
where P, represents the baseline intensity within the EF, T signifies the Fresnel transmission coefficient, while
P represents light intensity that escapes the field*2. The sensitivity comparison of the R.I sensor is shown in
Table 2.

Liquid level and RI simultaneous response

To evaluate the proposed sensor’s simultaneously measuring capability for liquid level and R.L., we submerged
the liquid level sensor to the maximum depth of 125 mm in a liquid with (RI=1.333), and then placed the R.I.
sensor in liquids with different NaCl saturated liquids shown in Fig. 9. When the maximum coupling power loss
occurred at the maximum liquid level depth, the sensitivity of —2624%/RIU was achieved by the R.I. sensor,
which had a resolution of 3.810 x 10~* in different NaCl liquids simultaneously without any interference between
the two measurements. The R.I. sensor’s correlation coefficient was 0.99827, and although a slight additional
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TCMB Radius (mm) | Sensitivity (%/RIU) | Resolution (RIU) | Correlation coefficient (R?) | Y =ax+b

25 —1906 5.246x 107 0.99897 —1906.09666x +2608.3297
15 —2158 4.632x107* 0.99818 —2158.75279x+2953.7499
8 —2663 3.754x107* 0.99740 —2663.83579x + 3642.1256

Table 2. Sensitivity response with different TCMB radii.
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Fig. 9. Simultaneous response of both sensors as the liquid level sensor was ascended to its maximum depth
and the R.I. sensor measured the different NaCl-saturated liquids.

References | Method Parameter Liquid level sensitivity | R.I. sensitivity Range of detection

24 Micro-holes Liquid level - - 0-550 mm

= Twisted tapering Liquid level 0.65%/mm - 0-23 mm

% Tapering RIL - 107dB/RIU 1.333-1.410

. MMI Liquid level & R.I. | 532pm/mm, 875pm/mm 1.3335-1.4164

» Side-polishing, bending | R.I. - 57 uW/ RIU 1.333-1.455

e SPR Liquid level & R | 0.00755 /mm 202441 n/RIU | 9200

31 - 0-30 mm
MZI Liquid level & R.I. | 0.88n/mm 315.21 nm/RIU 1.3296-1.3564

33 Micro-holes Liquid level & R.I. | 0.029%/mm —22.8%/RIU (1)_393031:::? 475

34 Po— 0-120 mm
U-shaped notch Liquid level & R.I. | 0.059%/mm 107.6£44%/RIU | | 33371 443

. Lo 0-125 mm
This work | TCMB Liquid level & R.I. | 8 nW/mm —2663%/RIU 1.333-1.361

Table 3. The comparison between the purposed sensor with other liquid level and R.1. sensors.

power loss was observed in the R.I sensor, it was negligible and did not affect the response of both sensors
operating simultaneously.

The liquid level and R.I. sensors described in the literature are compared with the proposed OFSs, as
illustrated in Table 3. The proposed sensor can be readily manufactured, requiring only twisting and macro-
bending, without additional treatments such as tapering, side polishing, or Bragg grating. Multiparameter
sensing of liquid level and R.I. is made possible by this sensor. The liquid level sensor exhibits a sensitivity of
8 nW/mm as shown in Fig. 9. Simultaneously R.I sensor measurements demonstrate a sensitivity of —2663%/
RIU with a resolution of 3.754 x 10~* RIU. The developed sensor maintains good consistency and reliability, and
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the experimental results showing its stability as a multi-parameter sensor. This sensor can find applications in
various industrial and commercial sectors, including chemical, petroleum, pharmaceutical industries and more.

Conclusion

This paper presents a sensor system that can simultaneously measure liquid level and R.I. using POF. The sensor
employs a twisted structure and coupling phenomenon for liquid level sensing, and a TCMB approach for R.L
sensing. The multiparameter sensor structure couples the light from single source to an EF, while the AFs are
connected to a two different power meters to measure the coupled power intensity. This sensor operates on
the principle of coupling power loss phenomenon. The sensor is analyzed using two configurations: a straight
twisted fiber for liquid level measurement and a micro-bent fiber for R.I. measurement. It was observed that the
straight coupled fiber did not exhibit any significant change, so a twisting coupled structure was established. The
twisted structure was evaluated under conditions with and without bending for the R.I. sensing. It was noticed
that the bend radius had an influence on the R.I. sensing, where a smaller bending radius exhibited higher
sensitivity and increasing the radius resulted in lower sensitivity. The coupling length is an important factor,
as a longer twisted-coupling length leads to more coupled power. Finally, intensity-based scheme working on
coupling power loss is adopted to achieve a multi-parameter liquid level and R.L. sensing.
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