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Abstract

In this paper, we propose and experimentally demonstrate an artificial intelligence (Al)-enabled efficient modulation
classification technique for underwater optical wireless communication (UOWC) systems. Specifically, time-domain
waveform histograms are adopted as classification features, where three modulation formats including direct current biased
optical orthogonal frequency division multiplexing (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM)
and pulse amplitude modulation (PAM) are considered. Moreover, Al algorithms such as decision trees (DT), k-nearest
neighbors (k-NN), support vector machines (SVM) and convolutional neural networks (CNN) are utilized to realize efficient
modulation classification based on the obtained waveform histogram features. Experimental results demonstrate that all
the four algorithms can achieve accuracy surpassing 95% when the received signal-to-noise ratio (SNR) exceeds 6.3 dB.
Furthermore, increasing the number of symbols in histograms enhances classification accuracy, whereas altering the number

of histogram bins has minimal impact on classification accuracy.

Keywords Underwater optical wireless communication (UOWC) - Modulation classification - Orthogonal frequency
division multiplexing (OFDM) - Pulse amplitude modulation (PAM)

1 Introduction

Underwater optical wireless communication (UOWC)
achieved a significant breakthrough following the devel-
opment of the AquaOptical II underwater optical com-
munication system by Marek and Daniela, which utilized
light-emitting diode (LED) arrays [1]. UOWC offers notable
advantages including high data rates, low delay, high com-
munication security, substantial transmission capacity, and
cost-effective implementation. Consequently, it has emerged
as a focal point in research within the realm of underwater
information transmission [2]. Despite its many advantages,
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the practical application of UOWC in real-world scenarios
still faces many challenges including limited modulation
bandwidth of LED sources, water turbidity, and turbulence
[3]. So far, several techniques have been reported to enhance
the performance of UOWC systems such as spatial division
transmission and pairwise coding [4], and multi-dimensional
transmission exploiting frequency, wavelength and polariza-
tion for robust and high-speed underwater data transmission
[5, 6].

Particularly, the orthogonal frequency division mul-
tiplexing (OFDM) technique has attracted considerable
attention in UOWC recently, primarily due to resistance to
inter-symbol interference (IST) and high spectral efficiency
[7]. In UOWC systems, where the transmitters utilize LEDs
or laser diodes (LDs) as non-coherent light sources, inten-
sity modulation with direct detection (IM/DD) is typically
employed for signal transmission. As a result, OFDM signals
in UOWC systems are constrained to convey as unipolar sig-
nals, meaning they are real and non-negative [8]. Presently,
several popular optical OFDM formats have been proposed
for IM/DD systems, which mainly include direct current
biased optical OFDM (DCO-OFDM) and asymmetrically
clipped optical OFDM (ACO-OFDM) [9]. To ensure that
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OFDM signals are real, the Hermitian symmetry condition is
applied to the subcarrier data symbols. To prevent negative
signals, DCO-OFDM introduces a direct current (DC) bias
and zero clipping. In the case of ACO-OFDM, only odd fre-
quency subcarriers are utilized for carrying symbols, while
even frequency subcarriers are set to zero. Consequently,
zero clipping noise only appears on the even subcarriers. In
brief, DCO-OFDM is more spectrally efficient while ACO-
OFDM is more power efficient [10—12]. Besides optical
OFDM schemes, pulse amplitude modulation (PAM) is also
commonly applied in UOWC due to its low computational
complexity, low peak-to-average power ratio (PAPR), and
simple structure [13, 14].

In practical UOWC systems, the underwater channel can
be very dynamic and diverse communication requirements
might be required in various scenarios. Hence, besides
conventional adaptive constellation modulation [15],
adaptive waveform modulation can also be applied to
enhance the performance of practical UOWC systems by
fully utilizing the advantages of different OFDM and PAM
modulation formats. When UOWC transmitters switch
among different OFDM and PAM modulation formats, an
efficient modulation classification technique is of practical
significance to identify and adjust the corresponding
demodulation scheme [16]. Although constellation
classification has been studied for adaptive UOWC systems
[17], it is not applicable to realize modulation classification
among various OFDM and PAM formats. To the best of
our knowledge, efficient modulation classification among
various OFDM and PAM formats has not yet been reported
for adaptive UOWC systems in the literature so far, which
remains to be an open problem in the field of UOWC.

Recently, artificial intelligence (AI) including traditional
machine learning and deep learning has been extensively
applied for performance improvement of UOWC systems,
e.g., deep learning-aided robust joint channel classification,
channel estimation and signal detection [18], reinforcement-
learning-based beam adaptation [19], sparse weight-
initiated deep neural network (DNN) equalization [20],
neural equalization for 512-color shift keying signal
demodulation in optical camera communication [21],
deep learning-based link adaptation [22], intelligent index

Adaptive waveform
modulation

Fig.1 Schematic diagram of i i
: DCO-OFDM i

adaptive waveform transmission
in UOWC systems: a adaptive
waveform transmitter and b
adaptive waveform receiver

modulation

modulation

Input bits

modulation

§ PAM §

(a) Adaptive waveform transmitter

@ Springer

/ 6| ACO-OFDM |\ ;

recognition using Al for OFDM with index modulation in
underwater OWC systems [23], ResNet-based real-time
beam tracking in water-air OWC systems [24], and long
short term memory neural network (LSTM-NN) enabled
optical camera communication for field-of-view (FOV)
water-to-air transmission [25]. In this paper, we propose
an efficient modulation classification technique for UOWC
systems by exploring the time-domain waveform histograms
as classification features and utilizing Al algorithms such
as decision trees (DT), k-nearest neighbors (k-NN), support
vector machines (SVM) and convolutional neural networks
(CNN) to perform modulation classification. Experimental
results demonstrate that accurate modulation classification
is achievable under a sufficiently high signal-to-noise ratio
(SNR).

2 Principle

Figure 1 illustrates the schematic diagrams of adaptive
waveform transmission in UOWC systems. The selection
of waveform modulation format for the transmitted signal
depends on channel conditions and the dynamic range of
the transmitter (Tx). Upon reception, after normalizing the
instantaneous amplitude values of the received signal, histo-
gram data is acquired. This data is then fed into a pre-trained
classification model, which outputs the classification results.
Based on these results, the signal demodulator selects the
appropriate demodulation scheme to recover the original
signal.

In this study, four classical Al algorithms including
DT, k-NN, SVM and CNN are employed. Histograms,
represented as an H-dimensional real vector, are utilized
as features for efficient modulation classification using Al
algorithms [26-28]. For each Al algorithm, the histogram
dataset from three modulation formats, i.e., DCO-OFDM,
ACO-OFDM and PAM, is divided into training and testing
datasets, respectively.

DT: A complete decision tree is composed of a root
node containing all histogram data and modulation for-
mats. It includes several process nodes indicating feature
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determination, with corresponding leaf nodes representing
decision results.

k-NN: k-NN works by calculating the similarity between
testing and training histogram data. It identifies the k nearest
neighbors based on this similarity measure. Subsequently,
the labels of these neighbors are voted to determine the
modulation formats.

SVM: SVM maps the input histogram data into a high
dimensional feature space. Within this space, a linear
decision surface is constructed to separate different classes.
While the SVMs are inherently binary classifiers, they
can facilitate multi-category classification by combining
multiple binary classifiers.

CNN: CNN is a type of deep feed-forward neural network
commonly used for image classification tasks. Utilizing 2D
convolutional layers, CNNs can effectively extract various
features from histogram data. As the weights of the CNN
models are updated and further optimized, the classification
accuracy of modulation formats tends to improve. This
enhancement in accuracy contributes to better generalization
performance of the CNN model.

3 Experimental setup and results
3.1 Experimental setup
Figure 2 illustrates the experimental setup of a point-to-

point UOWC system employing a vertical-cavity surface-
emitting laser (VCSEL) as the Tx end. The transmitted

\ CSEL APD

Tx lenstm water tank—> Rxlens

Fig.2 Experimental setup of a point-to-point UOWC system using a
red VCSEL. Insets: photos of a the overall system, b the transmitter,
and c the receiver

signal, generated offline using MATLAB, is loaded onto an
arbitrary waveform generator (AWG, Tektronix AWG7101),
ensuring that the bandwidth of both signals is about 1 GHz.
Subsequently, a 230-mA DC bias current is applied via a
bias-tee (bias-T, Mini-circuit ZFBT-6GW+) to drive a red
VCSEL (DERAY DV0688M). The emitted light propagates
sequentially through the Tx lens, the underwater channel and
the receiver (Rx) lens. At the Rx end, an avalanche photodi-
ode (APD, Menlo Systems APD210) with a bandwidth of 1
GHz detects the optical signal. The detected signal is then
captured by a digital storage oscilloscope (DSO, Tektronix
MSO073304DX). Offline demodulation is subsequently per-
formed using MATLAB.

The key parameters of the experiments are detailed in
Table 1. The underwater transmission distance is set to 2 ms.
For the OFDM signal, the IFFT/FFT length is set to 64. In
order to achieve the same transmission rate for the three
modulated formats, DCO-OFDM symbols employ 2QAM,
ACO-OFDM symbols use 4QAM, and the single carrier
signal employs 2-PAM modulation. Subsequently, the
received signal values are normalized to fall within the range
of [0, 1]. Furthermore, 400 symbols are generated for each
modulation format, and the resulting 1200 H-dimensional
vector dataset is partitioned into training and testing datasets
with a ratio of 4:1. The primary performance metric in this
study is classification accuracy, calculated by averaging the
accuracies of 50 tests for each classification algorithm.

3.2 Measured waveform histograms

Let SNR, H and N, represent the estimated SNR at the Rx
end, the number of histogram bins and the number of symbols
included in the histogram, respectively. Figure 3 shows the
waveform histograms of three modulation formats with differ-
ent SNR, H and N, values. As we can see, distinct histogram
shapes emerge among ACO-OFDM, DCO-OFDM, and PAM,
facilitating waveform classification. The histogram of ACO-
OFDM tend to concentrate around 0, DCO-OFDM signals
around 0.5, while PAM signals cluster around O and 1. Moreo-
ver, the peak and shape of the histogram begin to shift and the
histogram shapes among different modulation formats become

Table 1 Experimental parameters

Parameter Value
IFFT/FFT size 64
Number of symbols 400
Constellation for DCO-OFDM 2QAM
Constellation for ACO-OFDM 4QAM
DC bias 230 mA
Transmission distance 2m
Signal bandwidth 1 GHz
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less distinct at lower SNR levels. It can be concluded from Fig. 3
that it is effective to employ the time-domain waveform histo-
grams as distinctive features to perform classification for differ-
ent modulation formats.

3.3 Impact of received SNR

Figure 4 presents the classification accuracy achieved by four
Al classification algorithms across various received SNR
values. It is evident that the accuracy of all four algorithms
increases steadily with rising SNR. Notably, SVM consistently
demonstrates higher accuracy compared to other algorithms
when SNR is below 3.7 dB. Furthermore, for SNR = 10.2 dB,
SVM achieves an impressive accuracy of 99.62%.

3.4 Impact of symbol number
To enhance classification accuracy at low SNR levels, we con-

struct new histograms with an increased number of symbols
for OFDM signals. Correspondingly, the number of symbols
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As illustrated in Fig. 5, augmenting N, results in improved
accuracy across all four classification algorithms. Notably, both
k-NN and SVM achieve 100% accuracy for Ny, = 6 at low
SNR of 3.7 dB. This represents a substantial improvement com-
pared to the 94.21% accuracy of k-NN and 94.23% accuracy of
SVM for Nyy,,, = 1, marking a 5.8% increase in accuracy. The
observed enhancement can be attributed to the instability of
individual signal values at low SNR levels, where histogram
shapes exhibit minimal variation, thereby affecting classifica-
tion performance. However, increasing N, results in more

ym
distinct histogram shapes.
3.5 Impact of bin number

We further investigate the impact of the number of histogram
bins (H) on classification accuracy. In Fig. 3a—f, we compare
histogram shapes between two scenarios: H =4 and
H =10, with SNR set at 3.7 dB and N, = 1. Observing
the histograms, we note that with H = 4, shapes become
more concentrated in one bin, leading to increased values
in each bin and greater fluctuation among neighboring bins
compared to H = 10. Figure 6 illustrates the classification
accuracy achieved by four classification algorithms for
various numbers of histogram bins. Interestingly, altering
H from 3 to 12 does not significantly enhance performance
across all classification algorithms, which might due to the
fact that a bin number of 3 is sufficiently enough for the
time-domain waveform histograms to extract the distinctive
features for different OFDM and PAM modulation formats.

3.6 Comparison and discussions

Generally speaking, modulation classification techniques
fall into two main categories: one is likelihood-based

90
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Accuracy (%)

70—
3 4 5 6 8 10 12

Number of bins (H)

Fig.6 Classification accuracy in percentage vs. number of bins (H)
for four Al classification algorithms with SNR = 3.7 dB and N, = 1

sym

classification and the other is feature-based classification.
Particularly, likelihood-based classification usually requires
relatively high computational complexity to calculate the
likelihood ratios which might limit its practical applications,
while conventional feature-based classification normally
needs a lot of data for training so as to obtain satisfactory
classification performance [29, 30]. In contrast, the proposed
Al-enabled efficient modulation classification technique
employing time-domain waveform histograms is shown to be
a low-complexity way to achieve robust classification with
reduced training requirement. Hence, the proposed efficient
modulation classification technique has the potential for
practical implementation in real-world UOWC systems.

4 Conclusion

This paper presents experimental demonstrations of
classification among DCO-OFDM, ACO-OFDM, and
PAM for point-to-point UOWC systems. The histogram
shapes vary for different modulated signals, providing
valuable information for a feature-based classifier.
Four classical classification algorithms were employed,
achieving accuracy exceeding 95% when the received
SNR surpasses 6.3 dB. Notably, SVM outperforms DT, k-
NN, and CNN, particularly at relatively low SNR levels.
Additionally, we found that increasing the number of
symbols in histogram data improves classification accuracy,
while altering the number of histogram bins has minimal
impact on classifications. Hence, selecting the appropriate
classification algorithms for received signals enables the
receiver to accurately identify modulation formats and then
adjust demodulation formats, thereby promoting efficient
and high-quality communication.

In our future work, we will consider the efficient
classification of more types of modulation formats in
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UOWC systems applying adaptive waveform transmission.
Moreover, joint classification of waveform formats and
constellation formats will also be further investigated for

. Fei, C., Hong, X., Du, J., et al.: High-speed underwater wireless

optical communications: from a perspective of advanced modula-
tion formats. Chin. Opt. Lett. 17(10), 100012 (2019)

intelligent UOWC systems.
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