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Abstract
In this paper, we propose and experimentally demonstrate an artificial intelligence (AI)-enabled efficient modulation 
classification technique for underwater optical wireless communication (UOWC) systems. Specifically, time-domain 
waveform histograms are adopted as classification features, where three modulation formats including direct current biased 
optical orthogonal frequency division multiplexing (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM) 
and pulse amplitude modulation (PAM) are considered. Moreover, AI algorithms such as decision trees (DT), k-nearest 
neighbors (k-NN), support vector machines (SVM) and convolutional neural networks (CNN) are utilized to realize efficient 
modulation classification based on the obtained waveform histogram features. Experimental results demonstrate that all 
the four algorithms can achieve accuracy surpassing 95% when the received signal-to-noise ratio (SNR) exceeds 6.3 dB. 
Furthermore, increasing the number of symbols in histograms enhances classification accuracy, whereas altering the number 
of histogram bins has minimal impact on classification accuracy.

Keywords  Underwater optical wireless communication (UOWC) · Modulation classification · Orthogonal frequency 
division multiplexing (OFDM) · Pulse amplitude modulation (PAM)

1  Introduction

Underwater optical wireless communication (UOWC) 
achieved a significant breakthrough following the devel-
opment of the AquaOptical II underwater optical com-
munication system by Marek and Daniela, which utilized 
light-emitting diode (LED) arrays [1]. UOWC offers notable 
advantages including high data rates, low delay, high com-
munication security, substantial transmission capacity, and 
cost-effective implementation. Consequently, it has emerged 
as a focal point in research within the realm of underwater 
information transmission [2]. Despite its many advantages, 

the practical application of UOWC in real-world scenarios 
still faces many challenges including limited modulation 
bandwidth of LED sources, water turbidity, and turbulence 
[3]. So far, several techniques have been reported to enhance 
the performance of UOWC systems such as spatial division 
transmission and pairwise coding [4], and multi-dimensional 
transmission exploiting frequency, wavelength and polariza-
tion for robust and high-speed underwater data transmission 
[5, 6].

Particularly, the orthogonal frequency division mul-
tiplexing (OFDM) technique has attracted considerable 
attention in UOWC recently, primarily due to resistance to 
inter-symbol interference (ISI) and high spectral efficiency 
[7]. In UOWC systems, where the transmitters utilize LEDs 
or laser diodes (LDs) as non-coherent light sources, inten-
sity modulation with direct detection (IM/DD) is typically 
employed for signal transmission. As a result, OFDM signals 
in UOWC systems are constrained to convey as unipolar sig-
nals, meaning they are real and non-negative [8]. Presently, 
several popular optical OFDM formats have been proposed 
for IM/DD systems, which mainly include direct current 
biased optical OFDM (DCO-OFDM) and asymmetrically 
clipped optical OFDM (ACO-OFDM) [9]. To ensure that 
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OFDM signals are real, the Hermitian symmetry condition is 
applied to the subcarrier data symbols. To prevent negative 
signals, DCO-OFDM introduces a direct current (DC) bias 
and zero clipping. In the case of ACO-OFDM, only odd fre-
quency subcarriers are utilized for carrying symbols, while 
even frequency subcarriers are set to zero. Consequently, 
zero clipping noise only appears on the even subcarriers. In 
brief, DCO-OFDM is more spectrally efficient while ACO-
OFDM is more power efficient [10–12]. Besides optical 
OFDM schemes, pulse amplitude modulation (PAM) is also 
commonly applied in UOWC due to its low computational 
complexity, low peak-to-average power ratio (PAPR), and 
simple structure [13, 14].

In practical UOWC systems, the underwater channel can 
be very dynamic and diverse communication requirements 
might be required in various scenarios. Hence, besides 
conventional adaptive constellation modulation [15], 
adaptive waveform modulation can also be applied to 
enhance the performance of practical UOWC systems by 
fully utilizing the advantages of different OFDM and PAM 
modulation formats. When UOWC transmitters switch 
among different OFDM and PAM modulation formats, an 
efficient modulation classification technique is of practical 
significance to identify and adjust the corresponding 
demodulation scheme [16]. Although constellation 
classification has been studied for adaptive UOWC systems 
[17], it is not applicable to realize modulation classification 
among various OFDM and PAM formats. To the best of 
our knowledge, efficient modulation classification among 
various OFDM and PAM formats has not yet been reported 
for adaptive UOWC systems in the literature so far, which 
remains to be an open problem in the field of UOWC.

Recently, artificial intelligence (AI) including traditional 
machine learning and deep learning has been extensively 
applied for performance improvement of UOWC systems, 
e.g., deep learning-aided robust joint channel classification, 
channel estimation and signal detection [18], reinforcement-
learning-based beam adaptation [19], sparse weight-
initiated deep neural network (DNN) equalization [20], 
neural equalization for 512-color shift keying signal 
demodulation in optical camera communication [21], 
deep learning-based link adaptation [22], intelligent index 

recognition using AI for OFDM with index modulation in 
underwater OWC systems [23], ResNet-based real-time 
beam tracking in water-air OWC systems [24], and long 
short term memory neural network (LSTM-NN) enabled 
optical camera communication for field-of-view (FOV) 
water-to-air transmission [25]. In this paper, we propose 
an efficient modulation classification technique for UOWC 
systems by exploring the time-domain waveform histograms 
as classification features and utilizing AI algorithms such 
as decision trees (DT), k-nearest neighbors (k-NN), support 
vector machines (SVM) and convolutional neural networks 
(CNN) to perform modulation classification. Experimental 
results demonstrate that accurate modulation classification 
is achievable under a sufficiently high signal-to-noise ratio 
(SNR).

2 � Principle

Figure 1 illustrates the schematic diagrams of adaptive 
waveform transmission in UOWC systems. The selection 
of waveform modulation format for the transmitted signal 
depends on channel conditions and the dynamic range of 
the transmitter (Tx). Upon reception, after normalizing the 
instantaneous amplitude values of the received signal, histo-
gram data is acquired. This data is then fed into a pre-trained 
classification model, which outputs the classification results. 
Based on these results, the signal demodulator selects the 
appropriate demodulation scheme to recover the original 
signal.

In this study, four classical AI algorithms including 
DT, k-NN, SVM and CNN are employed. Histograms, 
represented as an H-dimensional real vector, are utilized 
as features for efficient modulation classification using AI 
algorithms [26–28]. For each AI algorithm, the histogram 
dataset from three modulation formats, i.e., DCO-OFDM, 
ACO-OFDM and PAM, is divided into training and testing 
datasets, respectively.

DT: A complete decision tree is composed of a root 
node containing all histogram data and modulation for-
mats. It includes several process nodes indicating feature 

Fig. 1   Schematic diagram of 
adaptive waveform transmission 
in UOWC systems: a adaptive 
waveform transmitter and b 
adaptive waveform receiver
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determination, with corresponding leaf nodes representing 
decision results.

k-NN: k-NN works by calculating the similarity between 
testing and training histogram data. It identifies the k nearest 
neighbors based on this similarity measure. Subsequently, 
the labels of these neighbors are voted to determine the 
modulation formats.

SVM: SVM maps the input histogram data into a high 
dimensional feature space. Within this space, a linear 
decision surface is constructed to separate different classes. 
While the SVMs are inherently binary classifiers, they 
can facilitate multi-category classification by combining 
multiple binary classifiers.

CNN: CNN is a type of deep feed-forward neural network 
commonly used for image classification tasks. Utilizing 2D 
convolutional layers, CNNs can effectively extract various 
features from histogram data. As the weights of the CNN 
models are updated and further optimized, the classification 
accuracy of modulation formats tends to improve. This 
enhancement in accuracy contributes to better generalization 
performance of the CNN model.

3 � Experimental setup and results

3.1 � Experimental setup

Figure 2 illustrates the experimental setup of a point-to-
point UOWC system employing a vertical-cavity surface-
emitting laser (VCSEL) as the Tx end. The transmitted 

signal, generated offline using MATLAB, is loaded onto an 
arbitrary waveform generator (AWG, Tektronix AWG7101), 
ensuring that the bandwidth of both signals is about 1 GHz. 
Subsequently, a 230-mA DC bias current is applied via a 
bias-tee (bias-T, Mini-circuit ZFBT-6GW+) to drive a red 
VCSEL (DERAY DV0688M). The emitted light propagates 
sequentially through the Tx lens, the underwater channel and 
the receiver (Rx) lens. At the Rx end, an avalanche photodi-
ode (APD, Menlo Systems APD210) with a bandwidth of 1 
GHz detects the optical signal. The detected signal is then 
captured by a digital storage oscilloscope (DSO, Tektronix 
MSO73304DX). Offline demodulation is subsequently per-
formed using MATLAB.

The key parameters of the experiments are detailed in 
Table 1. The underwater transmission distance is set to 2 ms. 
For the OFDM signal, the IFFT/FFT length is set to 64. In 
order to achieve the same transmission rate for the three 
modulated formats, DCO-OFDM symbols employ 2QAM, 
ACO-OFDM symbols use 4QAM, and the single carrier 
signal employs 2-PAM modulation. Subsequently, the 
received signal values are normalized to fall within the range 
of [0, 1]. Furthermore, 400 symbols are generated for each 
modulation format, and the resulting 1200 H-dimensional 
vector dataset is partitioned into training and testing datasets 
with a ratio of 4:1. The primary performance metric in this 
study is classification accuracy, calculated by averaging the 
accuracies of 50 tests for each classification algorithm.

3.2 � Measured waveform histograms

Let SNR, H and N
sym

 represent the estimated SNR at the Rx 
end, the number of histogram bins and the number of symbols 
included in the histogram, respectively. Figure 3 shows the 
waveform histograms of three modulation formats with differ-
ent SNR, H and N

sym
 values. As we can see, distinct histogram 

shapes emerge among ACO-OFDM, DCO-OFDM, and PAM, 
facilitating waveform classification. The histogram of ACO-
OFDM tend to concentrate around 0, DCO-OFDM signals 
around 0.5, while PAM signals cluster around 0 and 1. Moreo-
ver, the peak and shape of the histogram begin to shift and the 
histogram shapes among different modulation formats become 

Fig. 2   Experimental setup of a point-to-point UOWC system using a 
red VCSEL. Insets: photos of a the overall system, b the transmitter, 
and c the receiver

Table 1   Experimental parameters

 Parameter  Value

IFFT/FFT size 64
 Number of symbols 400
Constellation for DCO-OFDM 2QAM
Constellation for ACO-OFDM 4QAM
 DC bias 230 mA
Transmission distance 2 m
Signal bandwidth 1 GHz
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less distinct at lower SNR levels. It can be concluded from Fig. 3 
that it is effective to employ the time-domain waveform histo-
grams as distinctive features to perform classification for differ-
ent modulation formats.

3.3 � Impact of received SNR

Figure 4 presents the classification accuracy achieved by four 
AI classification algorithms across various received SNR 
values. It is evident that the accuracy of all four algorithms 
increases steadily with rising SNR. Notably, SVM consistently 
demonstrates higher accuracy compared to other algorithms 
when SNR is below 3.7 dB. Furthermore, for SNR = 10.2 dB, 
SVM achieves an impressive accuracy of 99.62%.

3.4 � Impact of symbol number

To enhance classification accuracy at low SNR levels, we con-
struct new histograms with an increased number of symbols 
for OFDM signals. Correspondingly, the number of symbols 

for transmitted PAM signals is increased by the same multiple. 
Figure 3j–l compare histograms of different modulation for-
mats after adjusting N

sym
 , with SNR set at 3.7 dB and H = 10 . 

Fig. 3   Waveform histograms: a 
ACO-OFDM, SNR = 3.7 dB, H 
= 4, Nsym = 1, b DCO-OFDM, 
SNR = 3.7 dB, H = 4, Nsym = 
1, c PAM, SNR = 3.7 dB, H = 
4, Nsym = 1, d ACO-OFDM, 
SNR = 3.7 dB, H = 10, Nsym = 
1, e DCO-OFDM, SNR = 3.7 
dB, H = 10, Nsym = 1, f PAM, 
SNR = 3.7 dB, H = 10, Nsym 
= 1, g ACO-OFDM, SNR = 
10.2 dB, H = 10, Nsym = 1, h 
DCO-OFDM, SNR = 10.2 dB, 
H = 10, Nsym = 1, i PAM, SNR 
= 10.2 dB, H = 10, Nsym = 1, j 
ACO-OFDM, SNR = 3.7 dB, H 
= 10, Nsym = 4, k DCO-OFDM, 
SNR = 3.7 dB, H = 10, Nsym = 
4, and l PAM, SNR = 3.7 dB, H 
= 10, Nsym = 4

Fig. 4   Classification accuracy in percentage vs. received SNR (SNR) 
in dB for four AI classification algorithms with H = 10 and N

sym
 = 1
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As illustrated in Fig. 5, augmenting N
sym

 results in improved 
accuracy across all four classification algorithms. Notably, both 
k-NN and SVM achieve 100% accuracy for N

sym
= 6 at low 

SNR of 3.7 dB. This represents a substantial improvement com-
pared to the 94.21% accuracy of k-NN and 94.23% accuracy of 
SVM for N

sym
= 1 , marking a 5.8% increase in accuracy. The 

observed enhancement can be attributed to the instability of 
individual signal values at low SNR levels, where histogram 
shapes exhibit minimal variation, thereby affecting classifica-
tion performance. However, increasing N

sym
 results in more 

distinct histogram shapes.

3.5 � Impact of bin number

We further investigate the impact of the number of histogram 
bins (H) on classification accuracy. In Fig. 3a–f, we compare 
histogram shapes between two scenarios: H = 4 and 
H = 10 , with SNR set at 3.7 dB and N

sym
= 1 . Observing 

the histograms, we note that with H = 4 , shapes become 
more concentrated in one bin, leading to increased values 
in each bin and greater fluctuation among neighboring bins 
compared to H = 10 . Figure 6 illustrates the classification 
accuracy achieved by four classification algorithms for 
various numbers of histogram bins. Interestingly, altering 
H from 3 to 12 does not significantly enhance performance 
across all classification algorithms, which might due to the 
fact that a bin number of 3 is sufficiently enough for the 
time-domain waveform histograms to extract the distinctive 
features for different OFDM and PAM modulation formats.

3.6 � Comparison and discussions

Generally speaking, modulation classification techniques 
fall into two main categories: one is likelihood-based 

classification and the other is feature-based classification. 
Particularly, likelihood-based classification usually requires 
relatively high computational complexity to calculate the 
likelihood ratios which might limit its practical applications, 
while conventional feature-based classification normally 
needs a lot of data for training so as to obtain satisfactory 
classification performance [29, 30]. In contrast, the proposed 
AI-enabled efficient modulation classification technique 
employing time-domain waveform histograms is shown to be 
a low-complexity way to achieve robust classification with 
reduced training requirement. Hence, the proposed efficient 
modulation classification technique has the potential for 
practical implementation in real-world UOWC systems.

4 � Conclusion

This paper presents experimental demonstrations of 
classification among DCO-OFDM, ACO-OFDM, and 
PAM for point-to-point UOWC systems. The histogram 
shapes vary for different modulated signals, providing 
valuable information for a feature-based classifier. 
Four classical classification algorithms were employed, 
achieving accuracy exceeding 95% when the received 
SNR surpasses 6.3 dB. Notably, SVM outperforms DT, k-
NN, and CNN, particularly at relatively low SNR levels. 
Additionally, we found that increasing the number of 
symbols in histogram data improves classification accuracy, 
while altering the number of histogram bins has minimal 
impact on classifications. Hence, selecting the appropriate 
classification algorithms for received signals enables the 
receiver to accurately identify modulation formats and then 
adjust demodulation formats, thereby promoting efficient 
and high-quality communication.

In our future work, we will consider the efficient 
classification of more types of modulation formats in 

Fig. 5   Classification accuracy in percentage vs. number of symbols 
( N

sym
 ) for four AI classification algorithms with SNR = 3.7 dB and 

H = 10

Fig. 6   Classification accuracy in percentage vs. number of bins (H) 
for four AI classification algorithms with SNR = 3.7 dB and N

sym
 = 1
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UOWC systems applying adaptive waveform transmission. 
Moreover, joint classification of waveform formats and 
constellation formats will also be further investigated for 
intelligent UOWC systems.
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