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Orthogonal frequency division multiplexing with index mod-
ulation (OFDM-IM) is shown to be an efficient modulation
scheme for underwater optical wireless communication
(UOWC) systems due to its high power efficiency and excel-
lent flexibility. Differing from conventional OFDM, the
modulation parameters of OFDM-IM consist of not only
M-ary constellations but also subcarrier indices. In this Let-
ter, we propose and demonstrate an intelligent automatic
modulation recognition (AMR) scheme for OFDM-IM in
UOWC systems by using Swin Transformer (Swin-T). More-
over, transfer learning with a hybrid training approach is
further proposed to substantially enhance the AMR perfor-
mance. Experimental results successfully demonstrate the
feasibility and superiority of the proposed intelligent AMR
scheme based on Swin-T with transfer learning and hybrid
training in UOWC systems. More specifically, a recogni-
tion accuracy of 96% can be obtained by using Swin-T
with transfer learning and hybrid training for a relatively
small received signal-to-noise ratio (SNR) of 3.6 dB. © 2025
Optica Publishing Group. All rights, including for text and data mining
(TDM), Artificial Intelligence (AI) training, and similar technologies,
are reserved.

https://doi.org/10.1364/OL.558321

Underwater optical wireless communication (UOWC) has been
widely shown as a promising technology for practical underwa-
ter environments, which has attracted great attention in recent
years [1]. Compared with traditional underwater acoustic and
radio frequency communications, UOWC enjoys unique advan-
tages such as large bandwidth, high data rate, low propagation
latency, high security, small size, and low power consumption
[2,3]. Nevertheless, practical UOWC systems generally suffer
from two challenges: one is the limited usable bandwidth of
commercial light sources such as light-emitting diodes (LEDs)
and laser diodes (LDs), and the other is the highly dynamic and
time-varying underwater channel condition affected by various
factors such as water turbidity and turbulence [4].

So far, many techniques have been proposed for perfor-
mance improvement of practical UOWC systems. Among which,
orthogonal frequency division multiplexing with index modu-
lation (OFDM-IM) has revealed great potential owing to its
advantages of high power efficiency and excellent flexibility
[5–7]. In OFDM-IM, the information bits are carried by both
M-ary constellations and subcarrier indices, which is funda-
mentally different from that in conventional OFDM [8]. When
OFDM-IM is applied in dynamic UOWC systems, both constel-
lation (including constellation shape and order) and index (i.e.,
the exact number of activated subcarriers in each subblock) can
be adaptively adjusted according to the change of the practi-
cal underwater channel conditions [9]. To efficiently perform
OFDM-IM demodulation, both constellation and index infor-
mation should be correctly known at the receiver side. Due to
the time-varying characteristic of practical underwater channels,
the considered constellation and index might change with time in
OFDM-IM-based UOWC systems, which significantly increase
the difficulty of OFDM-IM demodulation at the receiver side.

As a key enabling technique of adaptive modulation systems,
automatic modulation recognition (AMR) is able to identify
the detailed modulation parameters from the received signal
and hence facilitate signal demodulation at the receiver side.
Lately, several AMR schemes have been proposed for various
OWC systems. In [10] and [11], AMR has been considered in
visible-light-based OWC systems to realize classification among
rectangular quadrature amplitude modulation (QAM) constel-
lations with different orders. In [12], AMR has been used to
classify time-domain waveforms including OFDM and pulse
amplitude modulation (PAM). In [13], AMR has been applied
in multiple-input multiple-output (MIMO) OWC systems to
achieve open-set MIMO recognition. More specifically, an index
recognition scheme has been further investigated for OFDM-IM-
based UOWC systems in [14], where only index was recognized,
while the recognition of constellation was ignored. The AMR
for both index and constellation recognition based on a deep
neural network (DNN) has been studied in [15], where two sub-
networks were utilized to separately perform constellation and
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Fig. 1. Schematic diagram of the OFDM-IM system using intelligent AMR with hybrid training: (a) OFDM-IM transmitter and (b)
intelligent OFDM-IM receiver.

index recognitions. To the best of our knowledge, AMR for joint
constellation and index recognition in OFDM-IM-based UOWC
systems has not yet been reported in the literature.

In this Letter, we propose and experimentally demonstrate
a novel intelligent AMR scheme based on Swin Transformer
(Swin-T) for OFDM-IM-based UOWC systems. To substantially
enhance the recognition performance of the AMR scheme, trans-
fer learning with a hybrid training approach is further proposed.
Specifically, the hybrid training approach is realized by training
the Swin-T with both experimental data and simulation data.
Hardware UOWC experiments are conducted to evaluate and
compare the performance of the proposed AMR scheme with
other benchmark schemes.

Figure 1 depicts the schematic diagram of the OFDM-IM
system using intelligent AMR with hybrid training. At the
OFDM-IM transmitter, as shown in Fig. 1(a), the input bits are
first divided into G streams via a bit splitter, and each bit stream
is then sent into a subblock. In each subblock, the bit stream
is further split into two parts, which are used to perform index
selection and constellation mapping, respectively. For a subblock
with length n, l out of n subcarriers can be selected to trans-
mit constellation symbols, with l ∈ {1, 2, . . . , n}. Particularly,
OFDM-IM becomes conventional OFDM when l = n [16]. Sub-
sequently, all the subblocks are combined together to create the
OFDM block. After inverse fast Fourier transform (IFFT) with
Hermitian symmetry (HS) and parallel-to-serial (P/S) conver-
sion, the OFDM-IM signal is finally generated. At the intelligent
OFDM-IM receiver, as shown in Fig. 1(b), the received signal
is first converted to a parallel signal via serial-to-parallel (S/P)
conversion, and then fast Fourier transform (FFT) and frequency
domain equalization (FDE) are executed. In order to success-
fully perform OFDM-IM demodulation, intelligent AMR with
hybrid training is further carried out to recognize both constella-
tion and index jointly. The detailed principle of intelligent AMR
with hybrid training will be discussed later. The overall OFDM
block is split into G subblocks and log-likelihood ratio (LLR)
detection is performed within each subblock to recover the index
bits. The constellation symbols can be extracted accordingly
for further constellation demapping, and the final output bits
are obtained by combining the output bits of each subblock
together. In this work, without loss of generality, we assume
n = 4 with l ∈ {1, 2, 3, 4}, and a total of 6 basic constella-
tions including binary phase shift keying (BPSK), quadrature
phase shift keying (QPSK), 8PSK, 16PSK, 8-ary quadrature
amplitude modulation (8QAM), and 16QAM are considered for

Fig. 2. Illustration of 24 OFDM-IM constellation images for 6
basic PSK/QAM constellations with different l values.

recognition. The 24 OFDM-IM constellation images for 6 basic
PSK/QAM constellations with different l values are illustrated
in Fig. 2.

The principle of the proposed intelligent AMR using Swin-T
with transfer learning and hybrid training is shown in Fig. 3,
where a tiny-size Swin-T model is adopted to balance the com-
putational complexity and model performance. As the input of
existing learning models generally takes the default format of
RGB images, the Swin-T takes the RGB constellation images
as the input, which are split into a series of non-overlapping
patches, and each patch has a size of 4 × 4. Since each pixel has
three RGB channels, the dimension of each patch is given by
4 × 4 × 3. The dimensions of the patch vectors are transformed
into a predefined value using a linear embedding layer. This
predefined value is the input dimension that the transformer can
accept. The patches are processed through the Swin-T block in
Stage 1. To capture multi-scale feature information, a hierarchi-
cal transformer structure is constructed. The size of the patches
is continuously increased using a patch-merging operation. This
allows access to multi-scale information through multiple stages.
The patch-merging operation is similar to pooling, where neigh-
boring patches are merged into one larger patch. This larger patch
has an expanded receptive field and can capture multi-size fea-
tures effectively [17]. After global average pooling and linear
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Fig. 3. Principle of intelligent AMR using Swin-T with transfer
learning and hybrid training.

classification, the index and constellation associated with the
input constellation images can be jointly recognized.

Considering that the successful training of Swin-T usually
requires a large number of constellation image samples, we apply
transfer learning in Swin-T to reduce the training requirement.
More specifically, a pre-trained Swin-T based on the ImageNet
dataset is used as a starting point for learning a new task;
i.e., the pre-trained Swin-T is further fine-tuned based on the
OFDM-IM constellation image dataset [18]. Since the constel-
lation images have similar shallow and deep features as that
of the images included in the ImageNet dataset, the weights
and other parameters of the pre-trained Swin-T only need to be
moderately updated to converge; i.e., it needs much less data to
fine-tune the pre-trained Swin-T to obtain the features that dis-
tinguish the OFDM-IM constellation dataset and then achieve
satisfactory recognition performance. Moreover, a hybrid train-
ing approach is also proposed to further reduce the training
requirement, in which the constellation image samples used for
training are collected from both real-world UOWC systems and
computer simulations. Particularly, since the noise in real-world
UOWC systems can be reasonably assumed to be an additive
white Gaussian noise (AWGN), it is feasible to generate constel-
lation image samples for training through computer simulations
by adopting an AWGN channel with the practically estimated
received signal-to-noise ratio (SNR). Hence, the training data
consists of both real-world measured data and computer simu-
lated data, enabling hybrid training for the Swin-T. It should be
noted that the AWGN channel model adopted in the simulation
can be replaced with a more practical channel model according
to the practical channel conditions of the UOWC system.

To evaluate and compare the performance of the proposed
intelligent AMR using Swin-T with transfer learning and hybrid
training with other benchmark schemes in OFDM-IM-based
UOWC systems, hardware experiments are conducted in a lab
environment. The experimental setup of the UOWC system is
depicted in Fig. 4, where the transmitted signal is first generated
offline by MATLAB and then loaded to an arbitrary waveform
generator (AWG, Tektronix AFG31102) with a sampling rate
of 250 MSa/s. Subsequently, the AWG output signal is used
to drive a commercially available optical transmitter module
(HCCLS2021MOD01-Tx), which is powered by a 12 V DC
bias voltage. The emitted blue light passes through a 1 m water
tank filled with tap water, and a corresponding optical receiver
module (HCCLS2021MOD01-Rx) is adopted to detect the light
signal, which is also powered by a 12 V DC bias voltage. For
more details about the Tx/Rx modules, please refer to our previ-
ous work [19]. The detected signal is recorded by a digital storage

Fig. 4. Experimental setup of the UOWC system.

Table 1. Experimental Parameters

Parameter Value
IFFT/FFT size 256

Number of data subcarriers 64
Subblock length 4

Number of activated subcarriers in subblock 1, 2, 3, 4
Swin-T patch dimension 4 × 4 × 3

AWG sampling rate 250 MSa/s
DSO sampling rate 1.25 GSa/s

Effective signal bandwidth 62.5 MHz

oscilloscope (DSO, Tektronix MDO32) with a sampling rate of
1.25 GSa/s, and the obtained data are further processed offline
using MATLAB. In OFDM-IM modulation/demodulation, the
IFFT/FFT size is 256, and the number of data subcarriers is 64.
Hence, the effective bandwidth of the OFDM-IM signal is 62.5
MHz. The key experimental parameters can be found in Table 1.

Moreover, for a given received SNR value, a total of 240
constellation image samples are collected from the experimen-
tal OFDM-IM-based UOWC system to perform recognition of
24 OFDM-IM constellations, where 192 samples are used for
training, while 48 samples are used for testing. To perform
hybrid training, more constellation image samples are gener-
ated via computer simulations. The proposed intelligent AMR
using Swin-T with transfer learning and hybrid training is imple-
mented in PyTorch with an NVIDIA GeForce RTX 3090 GPU.
In addition, the benchmark schemes include DNN, convolutional
neural network (CNN), and Vision Transformer (ViT).

Figure 5 shows the recognition accuracy versus received SNR
for different schemes. As we can see, the recognition perfor-
mance using traditional DNN and CNN is relatively poor, with
an accuracy of less than 60% for a relatively large received
SNR of 11.6 dB. Moreover, the recognition performance can
be greatly improved for relatively large received SNR values
when using ViT and Swin-T. Specifically, for a relatively large
received SNR of 11.6 dB, the accuracy is increased from 58% to
100% when CNN is replaced by ViT or Swin-T. Nevertheless,
the overall recognition performance using ViT and Swin-T is
still not satisfactory at low-SNR values. By applying transfer
learning in Swin-T, the low-SNR recognition performance can
be moderately enhanced. Taking SNR= 3.6 dB as an example,
the accuracy is increased from 44% to 67% after the utilization
of transfer learning based on the ImageNet dataset. It can be
observed from Fig. 5 that the best recognition performance is
achieved by Swin-T with transfer learning and hybrid training,
where the hybrid training ratio (i.e., the ratio of the number of
experimental samples and the number of the simulation samples)
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Fig. 5. Recognition accuracy versus received SNR for different
schemes. TL, transfer learning; HT, hybrid training.

is assumed to be 1:10. With the aid of sufficient simulation sam-
ples for hybrid training, the overall recognition performance is
significantly improved especially in the low-SNR region. Partic-
ularly, the accuracy is increased from 67% to 96% at SNR= 3.6
dB after introducing hybrid training, and an accuracy above
60% can also be achieved with a received SNR as low as −0.6
dB. Figure 5 clearly demonstrates the advantages of using trans-
fer learning and hybrid training to enhance the overall AMR
performance based on Swin-T with a relatively small num-
ber of constellation image samples collected from the practical
OFDM-IM-based UOWC system.

Figure 6 shows the recognition accuracy versus hybrid train-
ing ratio for Swin-T with transfer learning and hybrid training
with different received SNRs. It can be seen that the lowest
recognition accuracy is achieved when the hybrid training ratio
is 1:0; i.e., only experimental data are used for training, for
relatively small received SNR values. Moreover, the recogni-
tion accuracy first gradually increases with the decrease of the
hybrid training ratio and then becomes stable when the hybrid
training ratio is reduced to 1:5 for the received SNR values
of −0.6, 3.6 and 7.6 dB. Specifically, an accuracy of 100%
can be obtained when the hybrid training ratio reaches 1:5 for
a received SNR of 7.6 dB, while the obtained accuracies are
64% and 96% when the hybrid training ratio reaches 1:5 for
received SNRs of 3.6 and −0.6 dB, respectively. Therefore, the
use of hybrid training with a proper hybrid training ratio can
result in substantially improved AMR performance compared
with the case without introducing simulation data for hybrid
training.

In this Letter, we have proposed and experimentally demon-
strated a Swin-T-based intelligent AMR scheme for OFDM-IM
in UOWC systems, which can jointly recognize both constella-
tion and index of the received OFDM-IM signals. To reduce
the training requirement of Swin-T and hence substantially
enhance the AMR performance, two techniques have been fur-
ther proposed including transfer learning and hybrid training.
By using a pre-trained Swin-T with the ImageNet dataset as
a starting point, the Swin-T can be efficiently trained based
on the OFDM-IM constellation image dataset. Moreover, com-
puter simulated constellation image samples can be introduced
to enrich the experimental constellation image dataset, enabling
hybrid training for Swin-T-based intelligent AMR scheme in
OFDM-IM-based UOWC systems. The obtained experimental
results show that intelligent AMR can be efficiently realized by

Fig. 6. Recognition accuracy versus hybrid training ratio for
Swin-T with transfer learning and hybrid training with different
received SNRs. exp, experimental; sim, simulation.

utilizing Swin-T with transfer learning and hybrid training for
OFDM-IM in UOWC systems.
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8. E. Başar and E. Panayırcı, in IEEE International Workshop on Optical

Wireless Communications (IWOW) (2015), pp. 11–15.
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