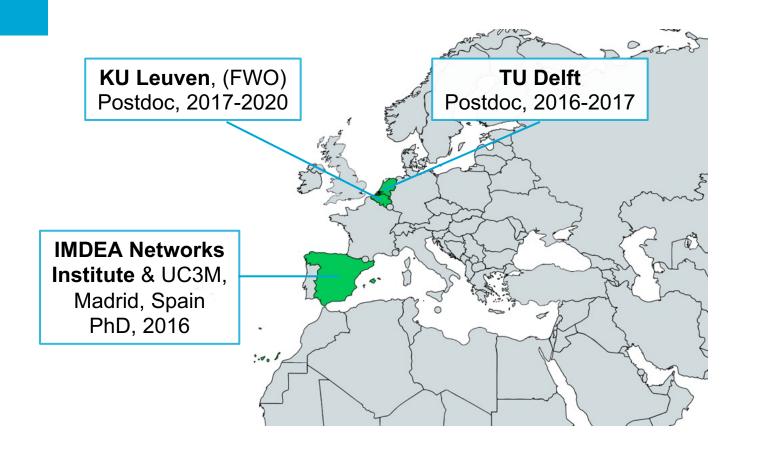


About me

Current position: Tenured Assistant Professor @ Embedded Systems Group, TU Delft



Current research areas:

Visible light communication & sensing

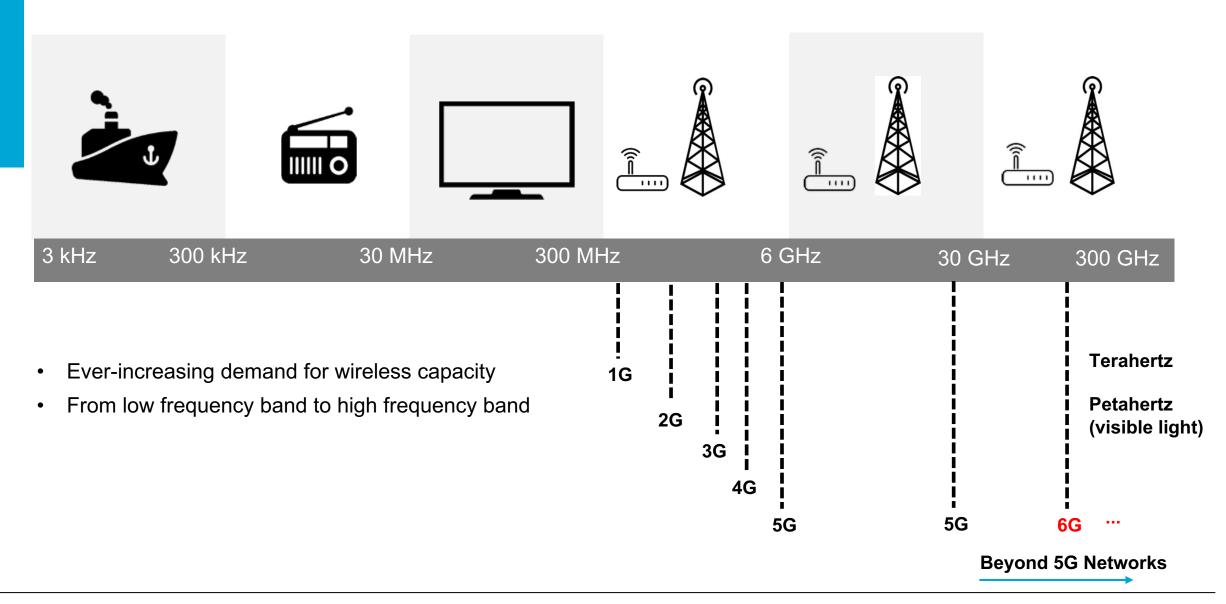
Embedded AI for IoT

Wireless networking

Co-founder:

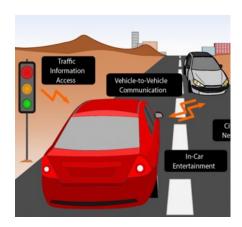
TU Delft's **Embedded Al Lab** The **OpenVLC** project

Evolution in wireless communications



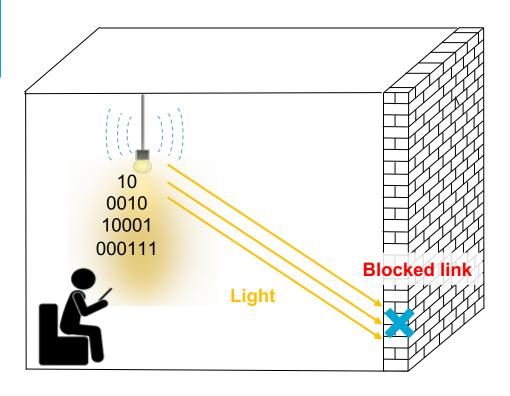
Visible Light Communication (VLC)

Advantages: 10,000x bandwidth than RF, energy efficient, existing LED infrastructure, etc.

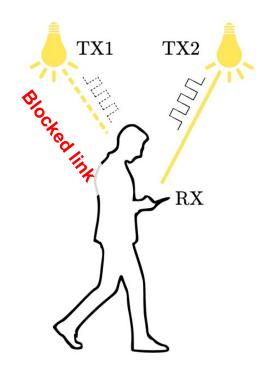


Applications: Li-Fi / Beyond 5G (6G) networks, Internet of vehicles, indoor positioning, secure communication, etc.

Challenge in VLC: not reliable due to blockages



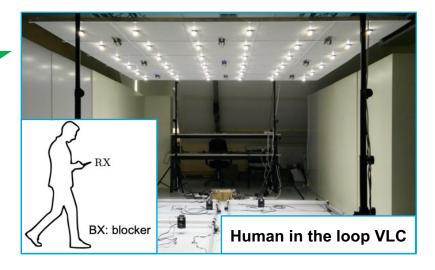
Wall as blockage

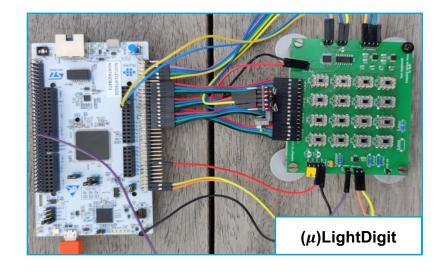


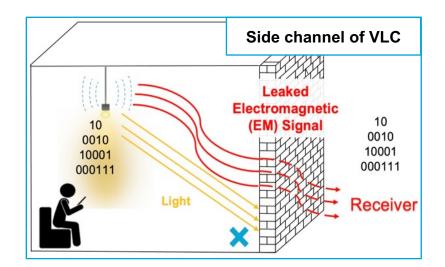
Human as blockage

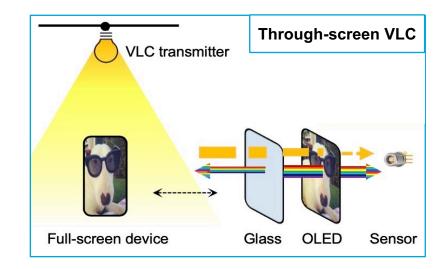
Screen becomes a blocker

Outline of this talk



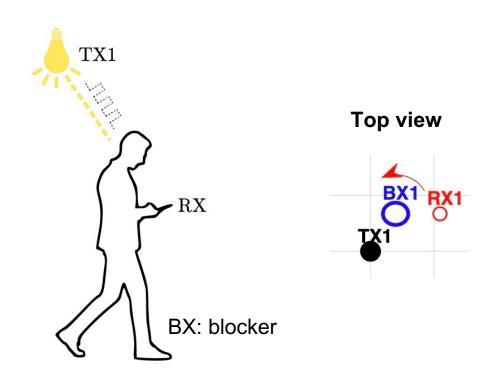


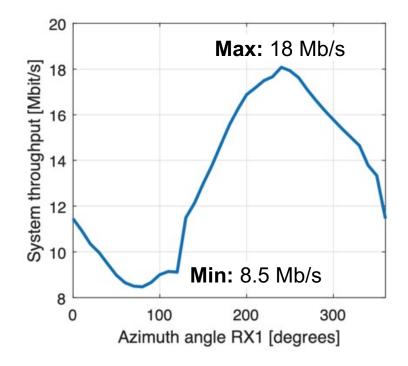




Solution 1: User-in-the-loop communication

User's participation plays an important role to tackle blockage issues.





Participation willingness

Would users be willing to **rotate themselves** to tackle blockage issues?

Could be, because:

- Visible light can be captured by our eyes → Spontaneous action to rotate towards the light
- Smartisan released a smartphone featuring an infinity screen for disruptive experience

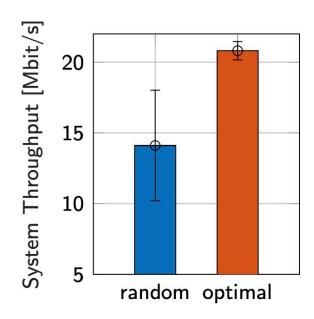
Research challenges

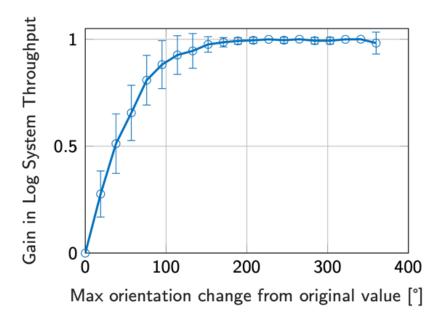
Challenge 1: Optimal user orientation

How can we identify the optimal user orientations?

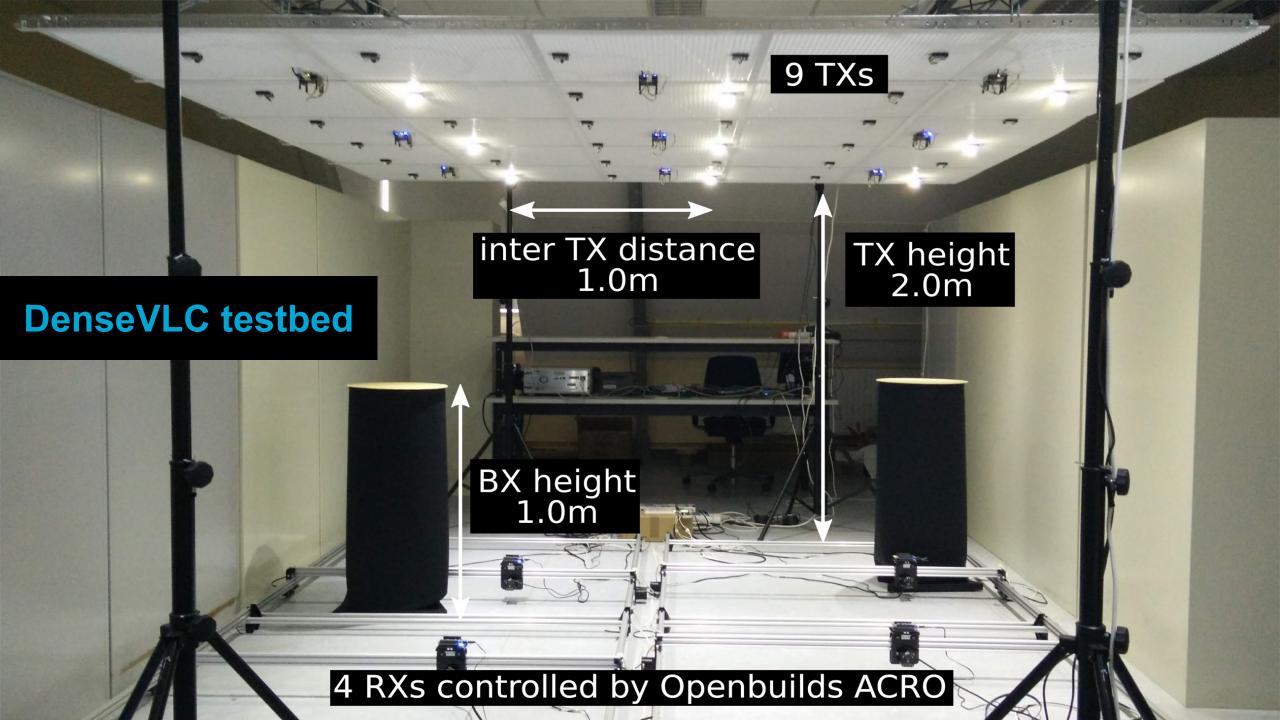
Challenge 2: Tradeoff between rotation and gain

With a constraint on the maximal user orientation, can we still improve the performance?



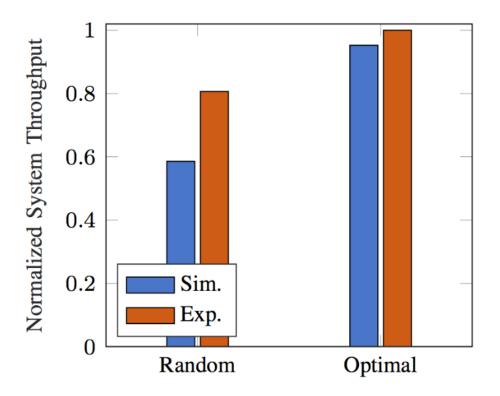


Some simulation results



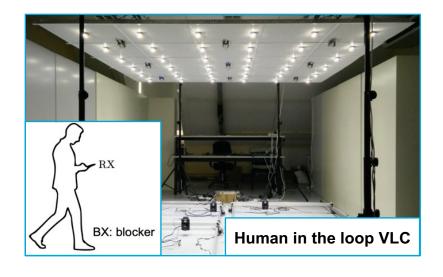
Experimental result

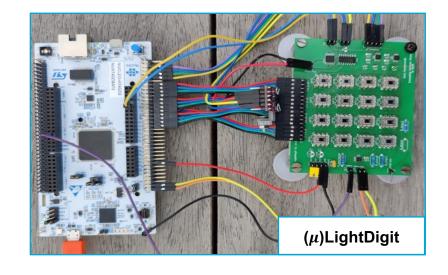
- User-in-the-loop VLC does help!
- Throughput in the experiment is higher (reflections)

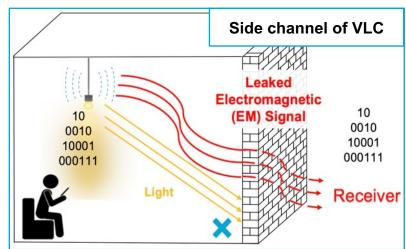


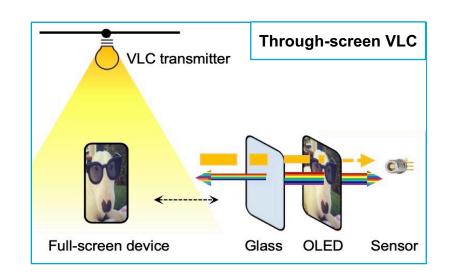
- J. Beysens, Q. Wang, S. Pollin. Exploiting Blockage In VLC Networks Through User Rotations. IEEE Open Journal of the Communications Society, 2020.
- J. Beysens, Q. Wang, S. Pollin. Improving Blockage Robustness in VLC Networks. *IEEE COMSNETS*, 2019. [Best Paper Award]

Outline of this talk

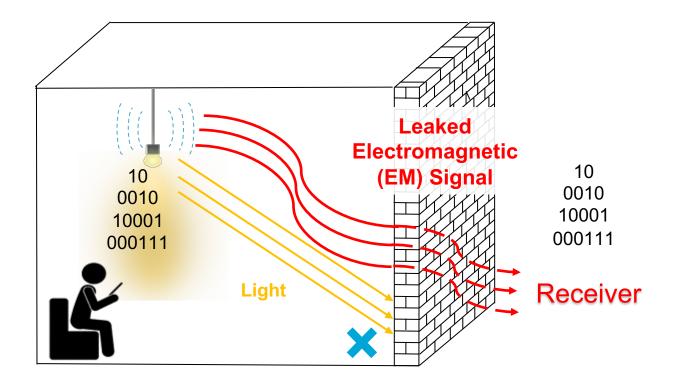




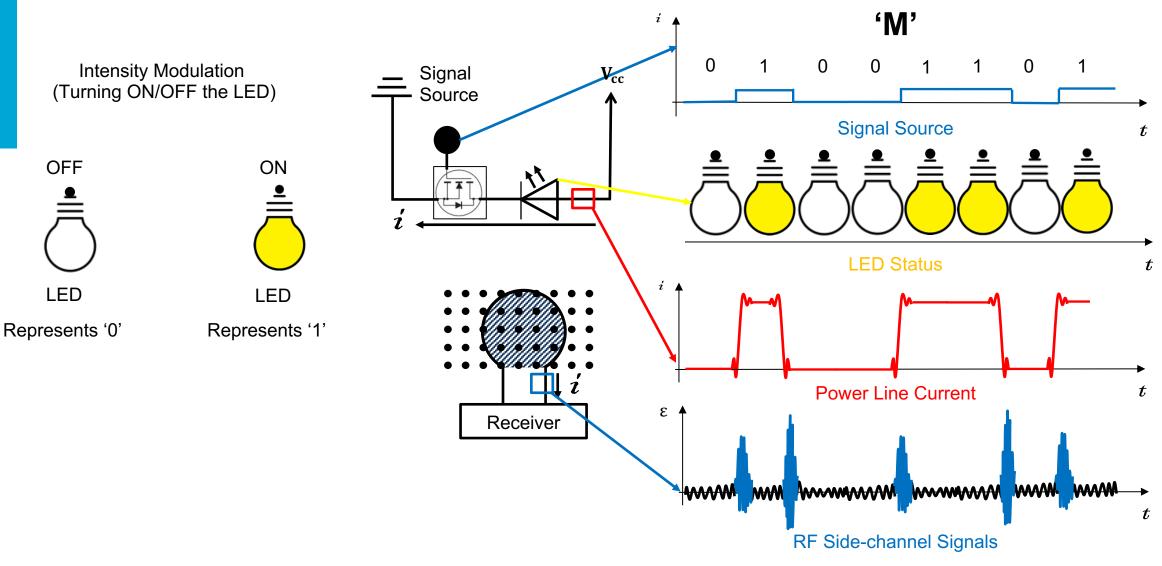




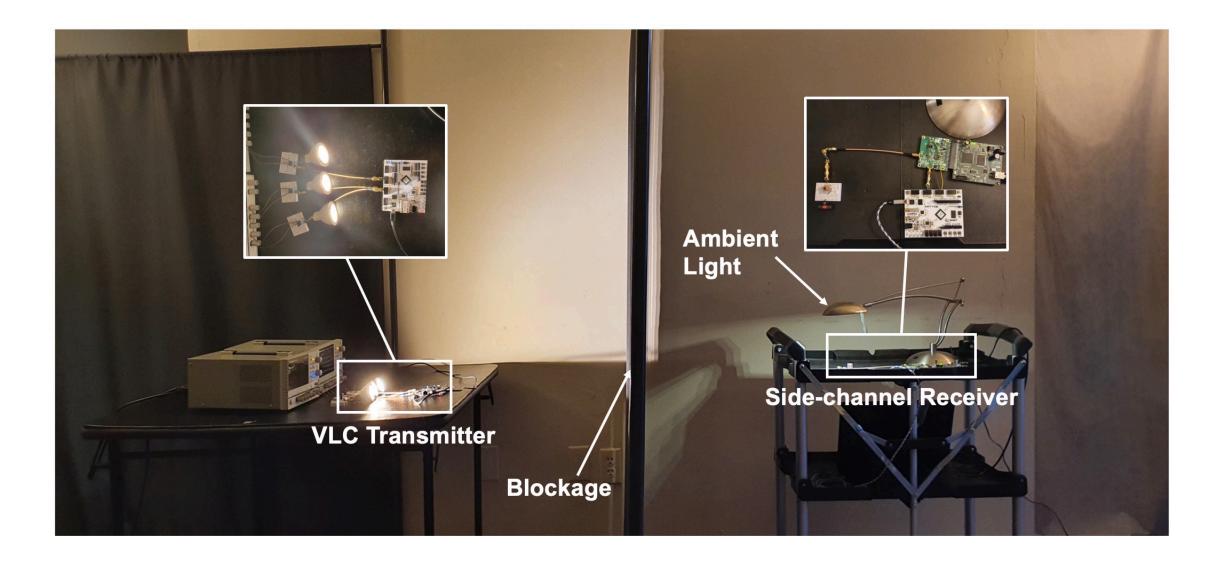
Solution 2: Exploiting the side channel of VLC



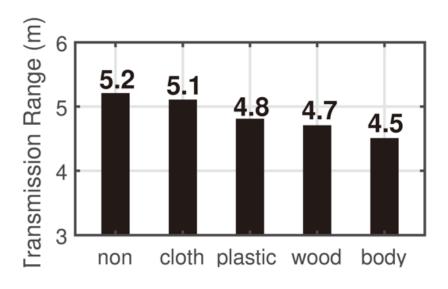
Why there is a side channel? Changing current → changing magnetic field



Built system & experimental setup



Experimental results



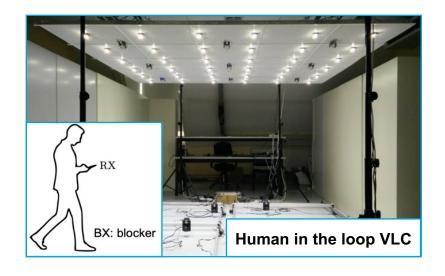
Transmission range: when bit error rate reaches 0.01

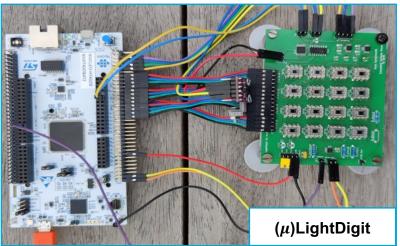
M. Cui, Q. Wang, J. Xiong. RadioInLight: Doubling the Data Rate of VLC Systems, ACM MobiCom, 2021.

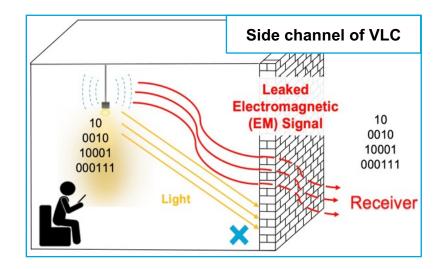
M. Cui, Q. Wang, J. Xiong. Breaking the Limitations of VLC Through Its Side Channel, ACM SenSys, 2020.

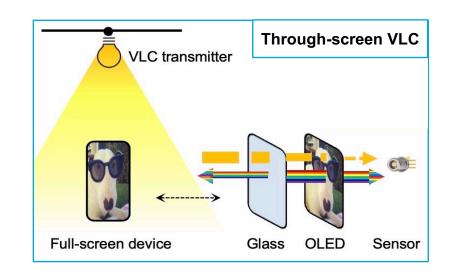
M. Cui, Y. Feng, Q. Wang, J. Xiong. Sniffing visible light communication through walls, ACM MobiCom, 2020.

Outline of this talk









Motivation: Protections against COVID-19

ATM

Use **toothpicks** to press the buttons

Tissues

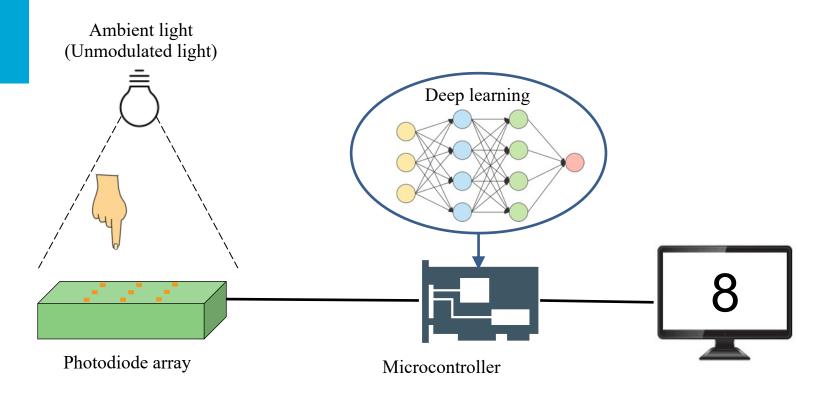
Sources: Economist, mashable.

Commercial solutions with a camera

Touch Free Sensing with Light and camera from **Ultraleap**

https://www.youtube.com/watch?v=tCLmmTk4S90

LightDigit: Embedded Al-empowered fingertip air-writing with ambient light and simple photodiodes



Objective

Design and implement an embedded system, allowing us to write digits inthe-air with ambient light and without any privacy issues (no camera)

→ To enable touch-free and privacypreserving interactions

Key features of LightDigit

- Ambient light
- Simple photodiodes (no camera)
- Running in real-time on an embedded device
- Embedded AI algorithms

Research challenges

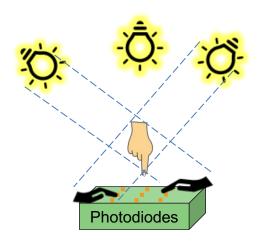
Different people, different writing styles

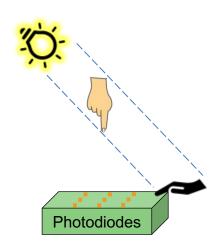
- Different shapes of handwritten digits, based on the region/person
- Different size of the written digits
- Different writing speed

Different shape Different size Different speed

Research challenges

Different position of ambient light and height of fingertip, different shadow areas

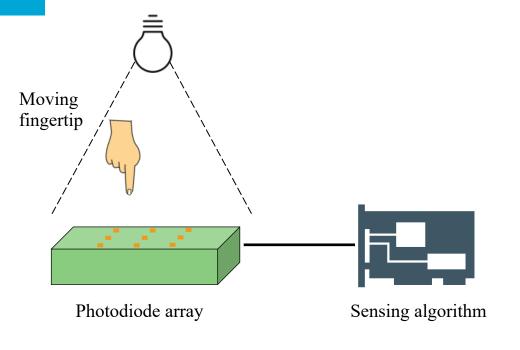




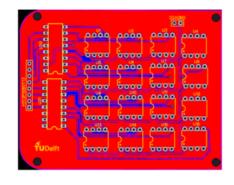
System Design

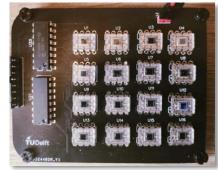
System architecture and prototype

Key components

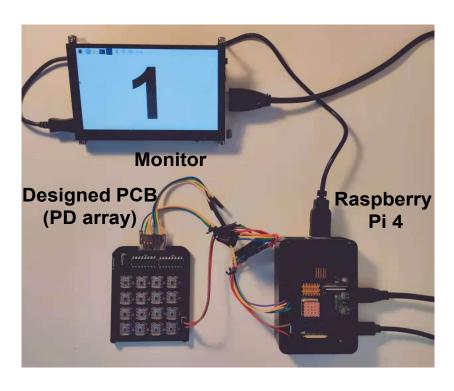


PCB design

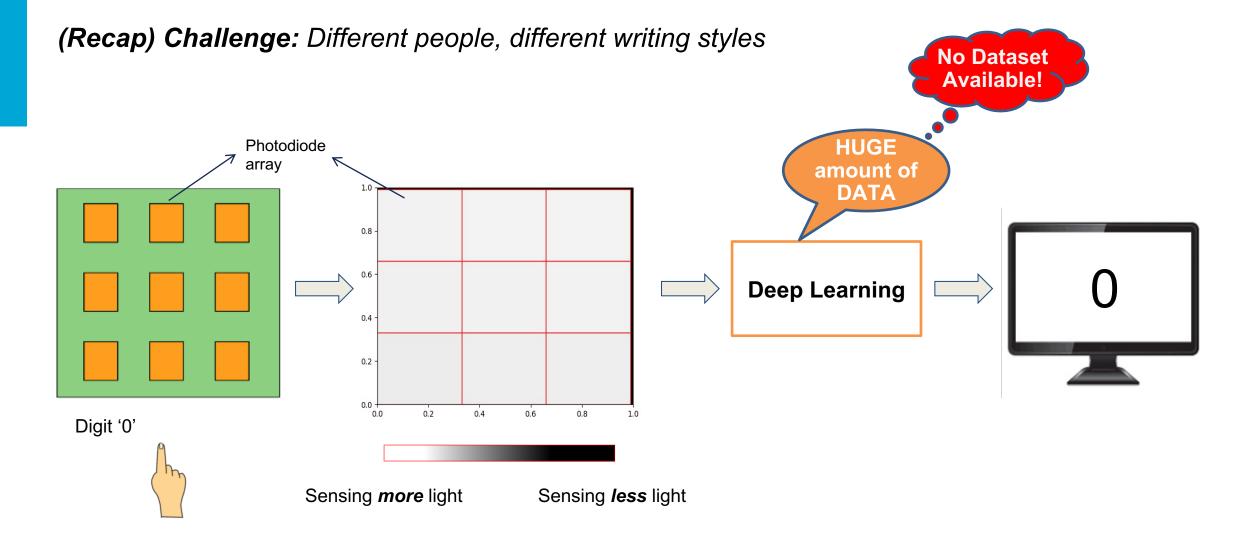




System prototype



Motivation for the LightDigit dataset



The popular MNIST dataset does not work here!

MNIST Dataset

- A large database of handwritten digits that is commonly used for training various image processing systems
- 2- Dimensional

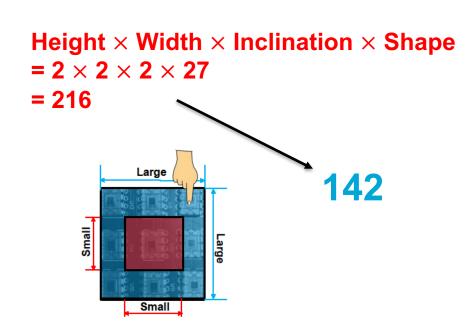
Our needs

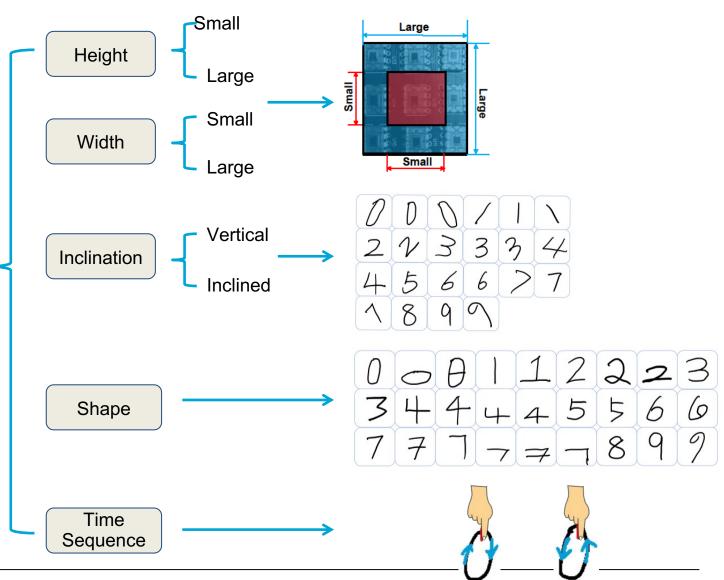
3-Dimensional (including time domain)

A simple way to collect the data, but...

Building LightDigit dataset: Analysis of air-writing digits

- LightDigit Dataset: Simulate 3-D datasets based on state-of-the-art 2-D datasets (data collection can be done by only one person)
 - 1) Define **five features** for each digit

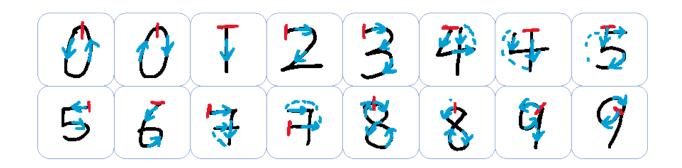




Effectiveness evaluation

2D-dataset	CASIA Dataset	EU (NL) Dataset **** ****	MNIST Dataset
Samples	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	450.png 451.png 452.png 453.png 453.png 459.png 459.png 459.png 462.png 463.png 464.png 465.png 470.png 470.png 477.png 476.png 477.png 476.png 480.png 483.png 483.png 483.png	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Size	10592	1999	70000
Coverage Rate	99.36%	99.30%	96.43%

Analysis of air-writing digits: Time sequence



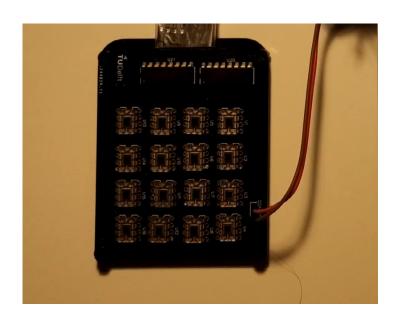
Height × **Width** × **Inclination** × **Shape** + **Uncovered Shapes** + **Time Sequence**

= 142 + 32

= 174 types of the ten digit 0--9

LightDigit dataset: Data collection

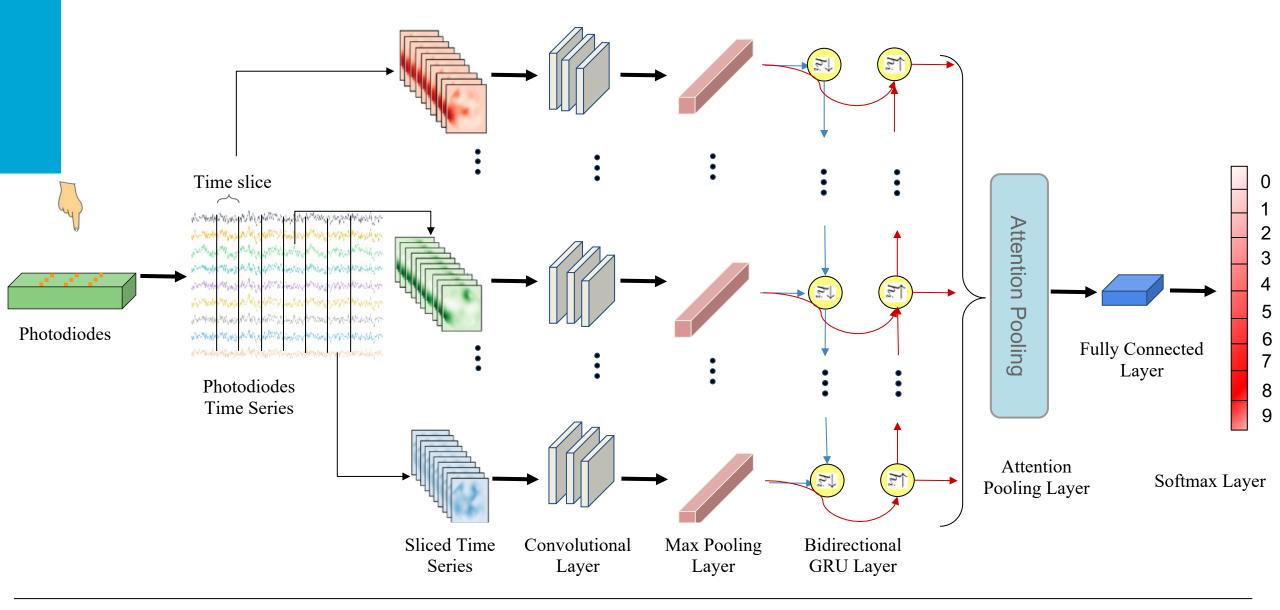
- LightDigit Dataset: Simulate 3-D datasets based on state-of-the-art 2-D datasets (data collection can be done by only one person)
 - 1) Define **five features** for each digit
 - 2) Effectiveness evaluation



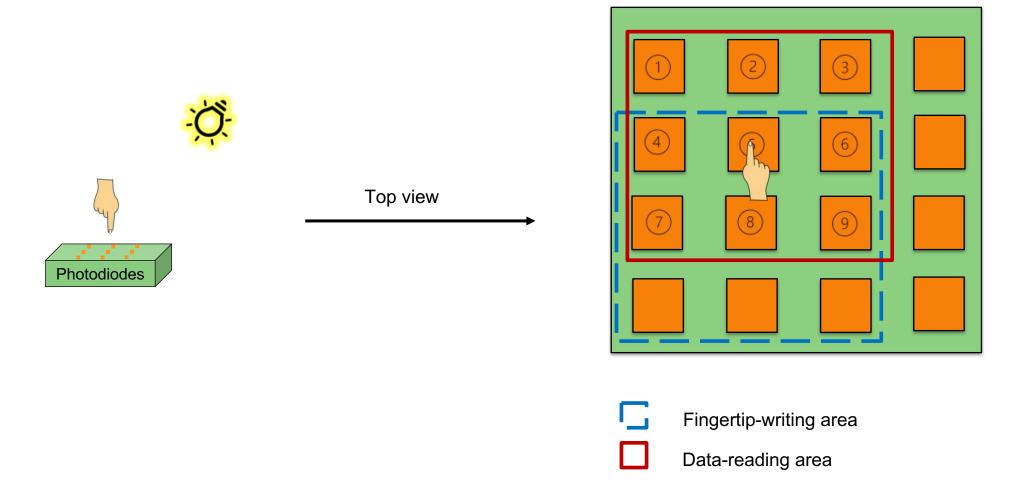
LightDigit Dataset

- Total 174 types of digit writing
- Each type is repeated/collected for 120 times
- One drawing/writing lasting for 5 seconds
- Total 20880 drawings & took ~3 weeks

Customized deep learning model: ConvRNN with attention



Calibration for different shadow areas / angles



Evaluation

Experimental setup

Testing environments

Home

Office

- Real Dataset: collected from 24 participants
 - Participants are from different countries: Mexico,
 Peru, Canada, Netherlands, Syria, and China
 - Each digit is repeated for 24 times
 - Each drawing/writing lasting for 5 seconds
 - Total 5561 drawings & took about 3 weeks

Samples (here we use **2-D** for better visualization; note that the data we have collected are actually **3-D**)

Experimental setup: Test scenarios

Scenario 1: Intra Subjects

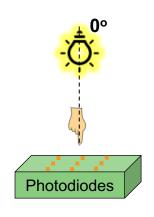
- Training: LightDigit dataset + 80% of each participant in Real dataset
- > **Testing:** 20% of each participant in **Real** dataset

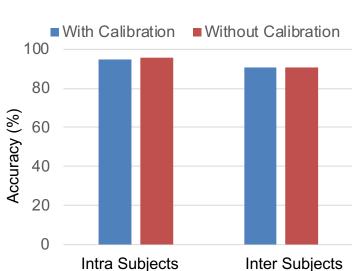
Scenario 2: Inter Subjects

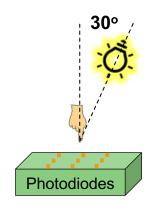
- Training: LightDigit dataset + 18 random participants in Real dataset
- Testing: the remaining 6 random participants in Real dataset

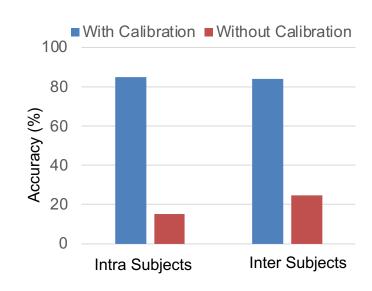
Performance of ConvRNN

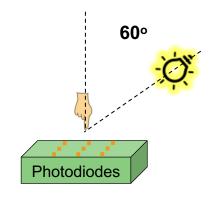
Results are averaged over 10 runs in each configuration.

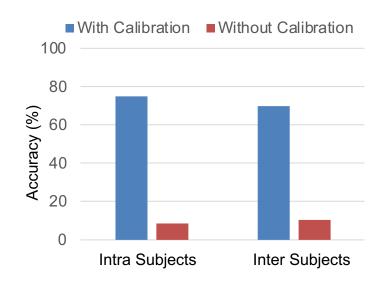




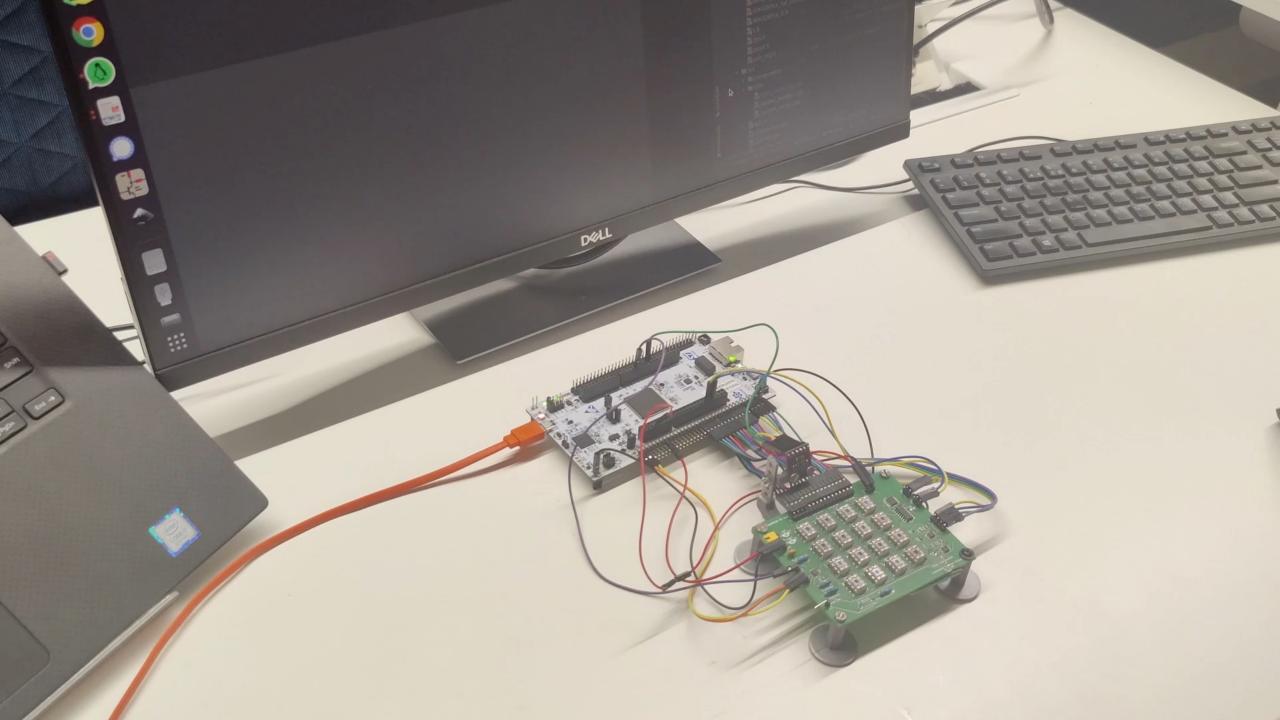






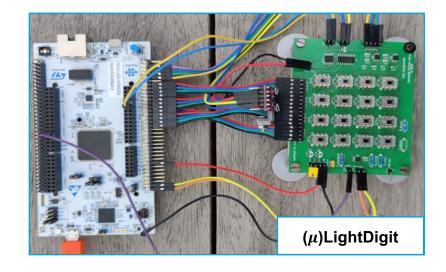


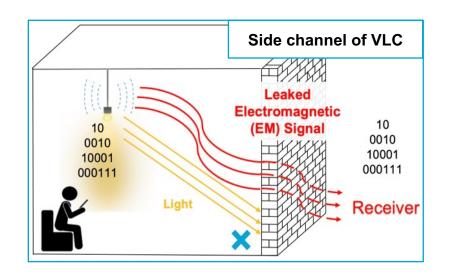
Demo

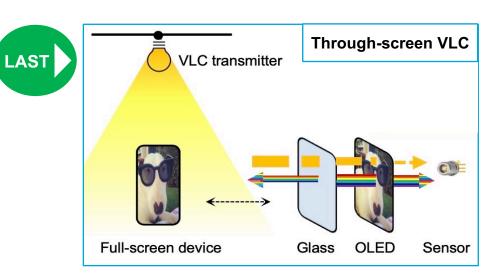


Outline of this talk

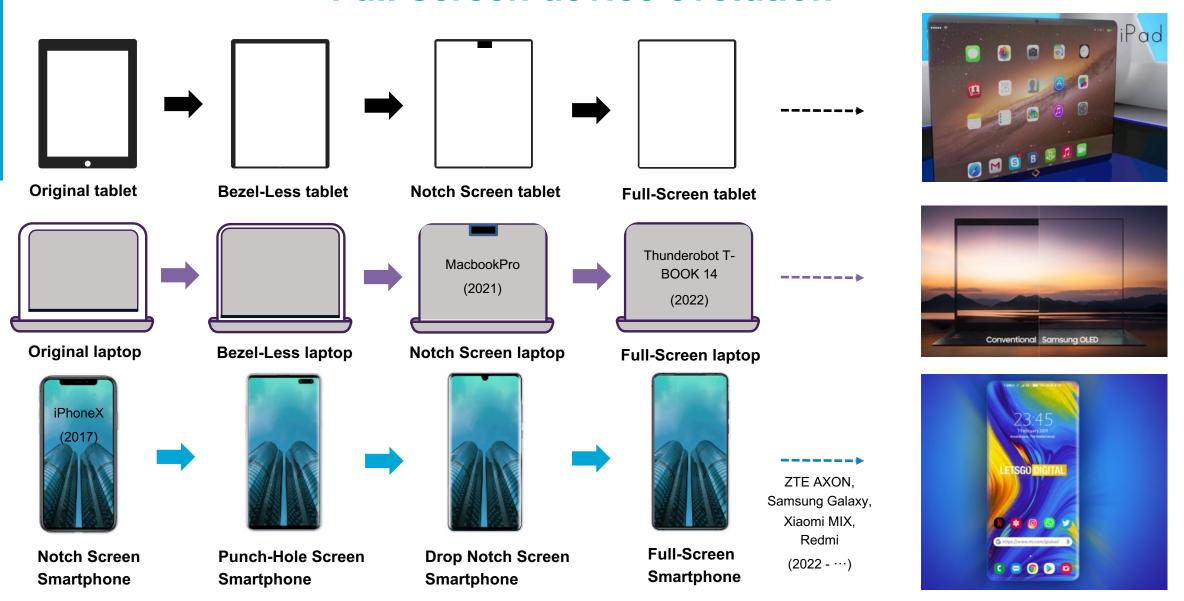




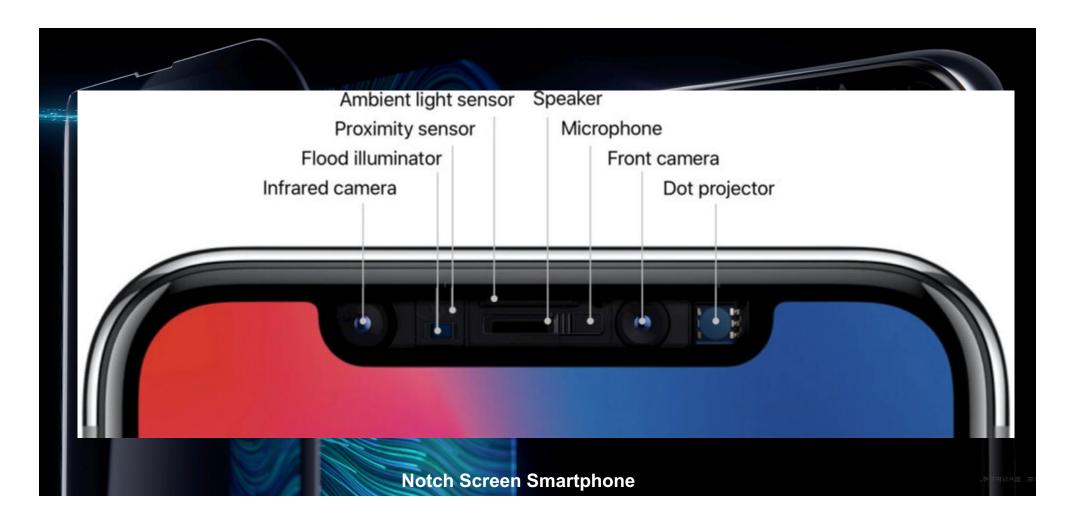




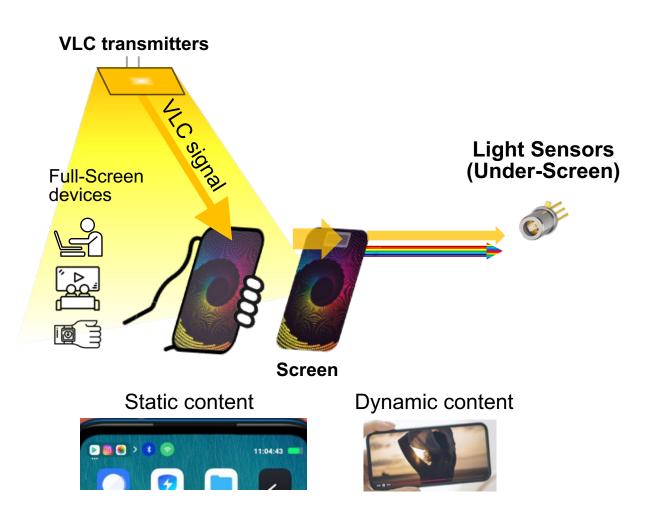
Full-screen device evolution



Full-screen & under-screen optical sensors



Through-screen VLC system



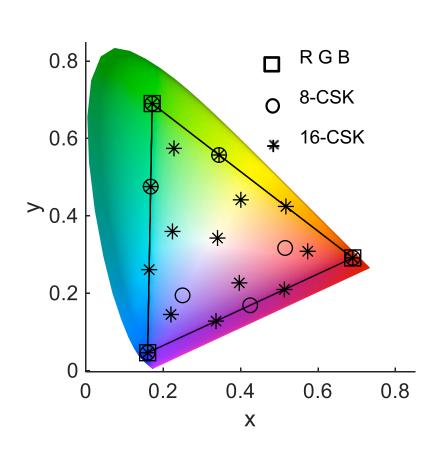
Screen's challenges:

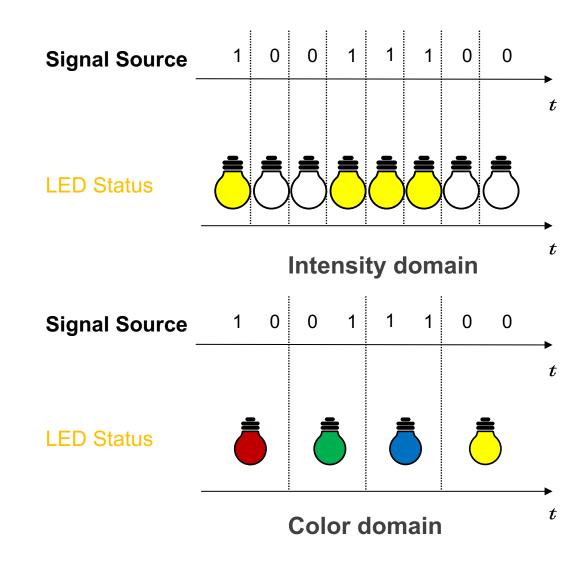
Passive blocker: >90% light loss ('blocked')

Active interference: diffractive blur and

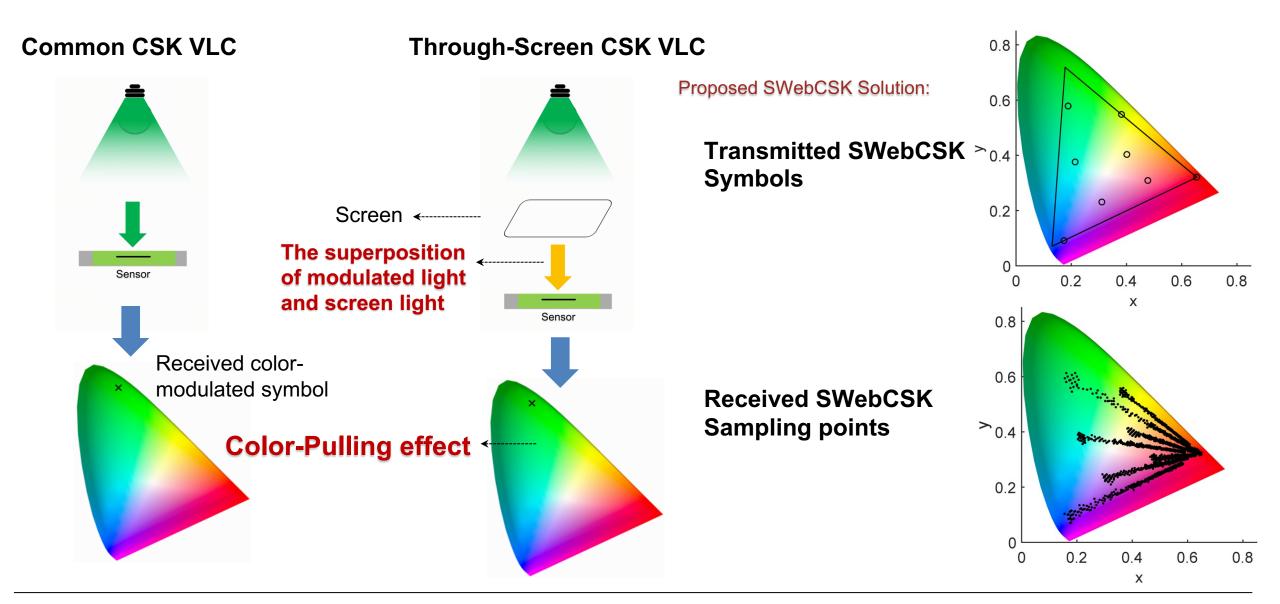
color shift

CSK: Color-shift keying modulation

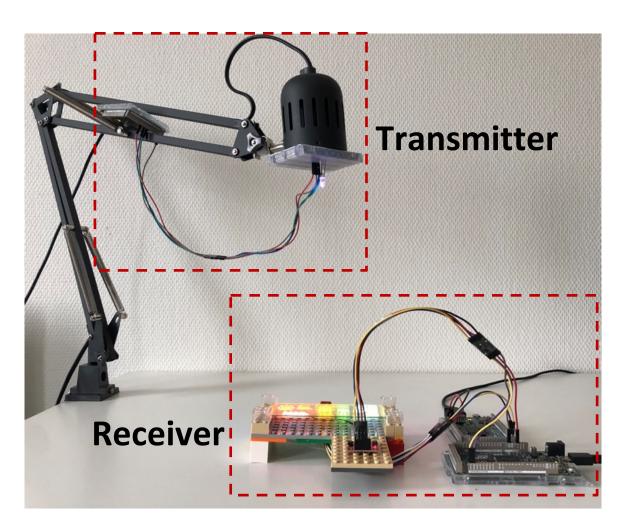




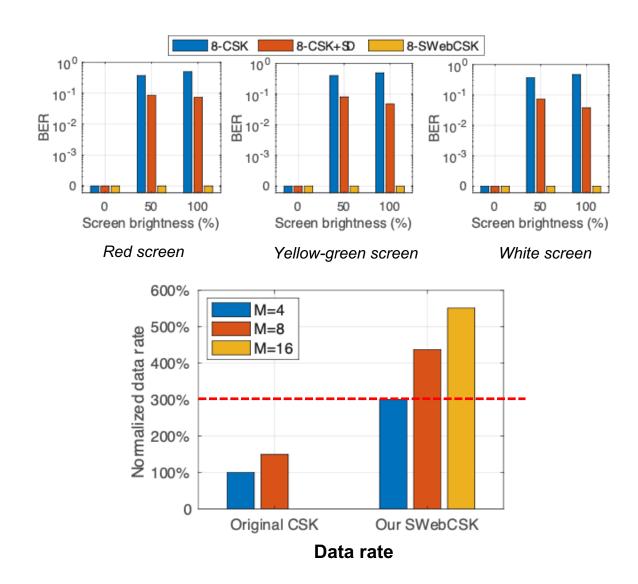
Color-pulling effect & SWebCSK



Built testbed & experimental results



SpiderWeb: Enabling Through-Screen Visible Light Communication **Hanting Ye**, Qing Wang. ACM SenSys, 2021.



Conclusion

