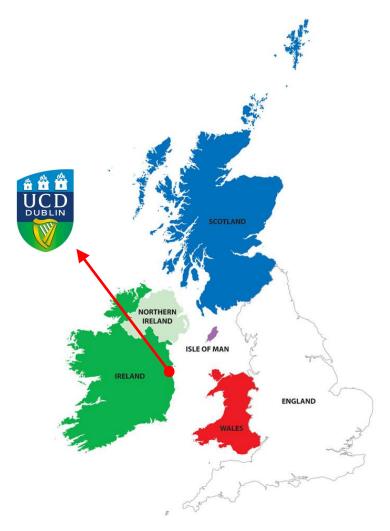
光无线与射频通信混合网络

吴希平(Assist. Prof.) 都柏林大学 电气与电子工程学院

川渝前沿论坛,2022年10月12日



An introduction to University College Dublin

University College Dublin (UCD)

- Located in Dublin, the capital of Ireland
- Founded in 1854
- Ireland's largest university (with 30,000+ students)
- 5 Nobel Laureates
- 2022 QS ranking #173

An introduction to myself

- 2015, PhD degree from University of Edinburgh
- 2015 2019, Research Associate at LiFi R&D Centre, University of Edinburgh
- 2019 2020, Senior Research Associate at University of Oxford
- 2022 , Assistant Professor at School of EEE, UCD

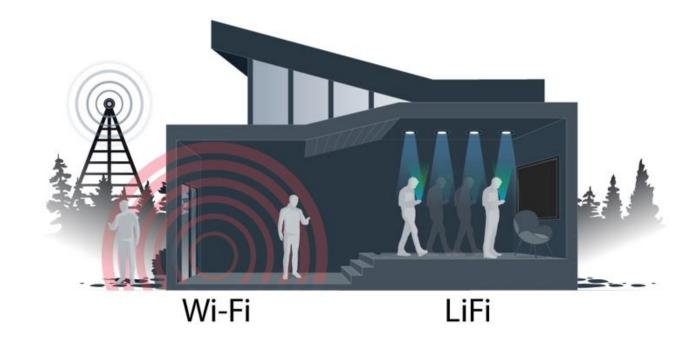
Optical wireless communications (OWC)

- Hybrid OWC and RF networking
- OWC transceiver design and signal processing
- Energy harvesting
- The Internet of Things (IoT)

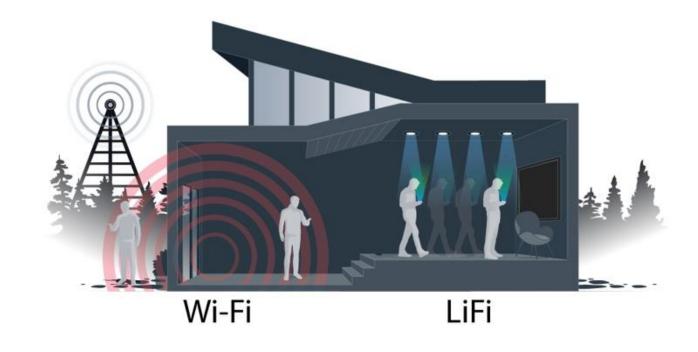
Profile

Publications

Research


Lab

- 50+ SCI and conference papers
- 1700+ citations
- H-index is 22 (google scholar)
- "Hybrid LiFi and WiFi Networks: A Survey"


Outline

- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- > Parallel transmission LiFi
- Applications and Summary

Outline

- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- > Parallel transmission LiFi
- Applications and Summary

Towards 6G

- 2.4 kbps
- 1000 ms
- Analog phone

- 64 kbps
- 500 ms
- Feature phone
- 2 Mbps
- 100 ms
- Internet phone
- 1 Gbps¹
- 50 ms
- Smart phone

- 10 Gbps²
- 20 ms³
- IoT

- 1000 Gbps⁴
- < 1 ms
- Holographic display

Enabled technology

Enabling technology

¹The theoretical peak data rate of 4G is 1 Gbps, while the average data rate in practice is about 30 Mbps.

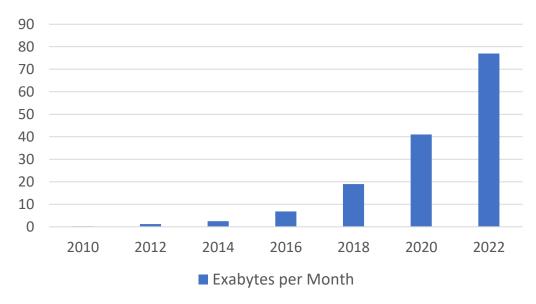
²The theoretical peak data rate of 5G is 10 Gbps, while the average data rate in practice is about 200 Mbps.

³The theoretical delay target of 5G is 1 ms, while the average delay in practice is 21-26 ms.

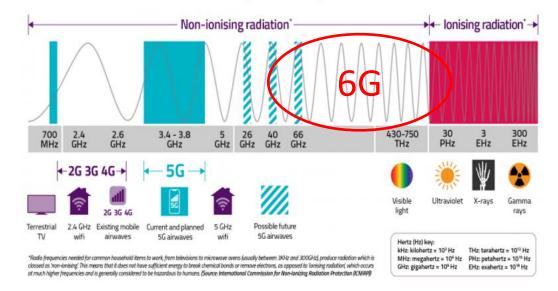
⁴6G is expected to provide an average data above 10 Gbps, which can meet the demand of 60 fps holographic displaying (9.44 Gbps).

Towards 6G (cont.)

Trends:

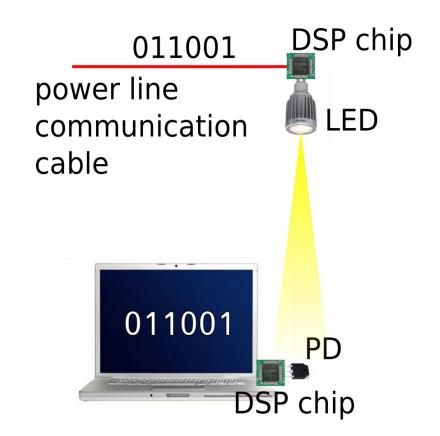

- Mobile data traffic increases exponentially
- About 80% data traffic occurs indoor
- Spectrum efficiency (SE) increases linearly

Capacity = Bandwidth \times Spectrum Efficiency \times Reuse


Development directions:

- Increase reuse ⇒ Small Cell
- Extend bandwidth ⇒ mmWave, THz, VLC

Global Mobile Data Traffic



The Electromagnetic Spectrum

A brief review of LiFi

- > A network variant of visible light communications (VLC)
- > LEDs or laser diodes (LD) as the transmit antenna
- > Intensity modulations
 - On-off keying (OOK)
 - Colour shift keying (CSK)
 - Pulse modulation
 - O-OFDM (DCO, ACO)
- > Photodiodes as the receive antenna
 - PN PD
 - PIN PD
 - APD (Avalanche photodiode)
 - SPAD (Single-photo avalanche diode)

A brief review of LiFi (cont.)

Advantages

- ➤ Wide spectrum resource (~300 THz)
- ➤ High link data rates
 - 10s Gb/s using LEDs [1]
 - Tb/s using laser diodes [2]
- ➤ High security
- Feasibility in RF-restricted areas, e.g., hospitals and underwaters
- ➤ Potential energy savings

Limitations

- ➤ Relatively short range (a few meters in diameter)
- ➤ Possibly frequent handovers
- ➤ Susceptible to channel blockages

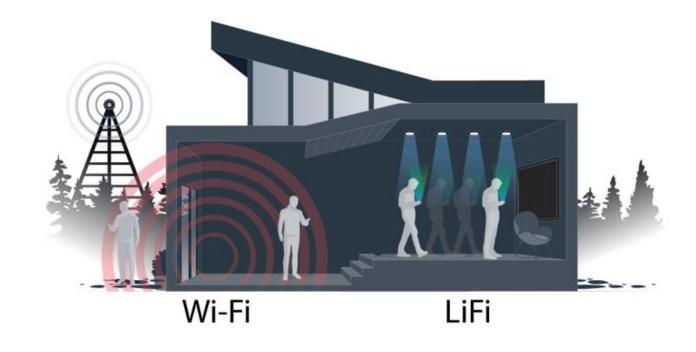
The **complementation** between LiFi and RF brings a great opportunity to work together!

^[1] R. Bian, I. Tavakkolnia and H. Haas, "15.73 Gb/s Visible Light Communication With Off-the-Shelf LEDs," *Journal of Lightwave Technology*, vol. 37, no. 10, pp. 2418-2424, May 2019.

^[2] E. Sarbazi, H. Kazemi, M. Dehghani Soltani, M. Safari and H. Haas, "A Tb/s Indoor Optical Wireless Access System Using VCSEL Arrays," *IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications*, 2020.

Hybrid LiFi and WiFi networks (HyFi)

- The concept can be traced back to 2011 [3].
- ➤ The first comprehensive survey in 2021 [4].
- Complementary access point (AP) properties:
 - Coverage: WiFi AP >> LiFi AP
 - Capacity: WiFi AP < LiFi AP
- > Key challenges lie in:
 - How to deploy the hybrid network?
 - How to manage the hybrid network?
 - How to apply the hybrid network?

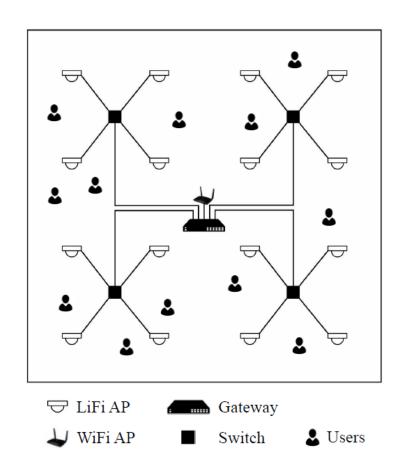

Conceptual diagram of HyFi [4]

^[3] M. B. Rahaim et al. "A hybrid radio frequency and broadcast visible light communication system," in 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, 2011, pp. 792–796.

^[4] X. Wu et al. "Hybrid LiFi and WiFi Networks: A Survey," IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398-1420, 2nd Quart. 2021.

Outline

- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- > Parallel transmission LiFi
- Applications and Summary


Hybrid Network Management

HyFi network topology:

- One WiFi AP and a number of LiFi APs
- All APs are managed by a central unit (hypervisor)
- LiFi APs can be grouped (through a switch)

Should a user be served by *LiFi or WiFi*?

- Channel quality
- Data rate requirement
- Resource availability
- Mobility
- Light-path blockage

Network topology of HyFi

Access Point Selection

- Consider *quasi-static* users
- Some APs (especially WiFi) could be overloaded
- The user may should not be connected to the AP providing the highest SNR
- Can be solved through proportional fairness (PF) optimization [5]:

maximise
$$\sum_{u} \log \left(R_{u} = \sum_{i} \chi_{i,u} \rho_{i,u} r_{i,u} \right) \quad \text{where} \quad i \text{ is the index of APs;}$$
 subject to
$$\chi_{i,u} \in \{0,1\}, \quad \forall i,u;$$

$$\sum_{i} \chi_{i,u} = 1, \quad \forall u;$$

$$\sum_{i} \chi_{i,u} = 1, \quad \forall u;$$

$$\rho_{i,u} \text{ is the link connectivity;}$$

$$\rho_{i,u} \text{ is the portion of link resource;}$$

$$r_{i,u} \text{ is the link capacity, which depends on the SNR;}$$

$$\sum_{i} \chi_{i,u} \rho_{i,u} \leq 1, \quad \forall i.$$

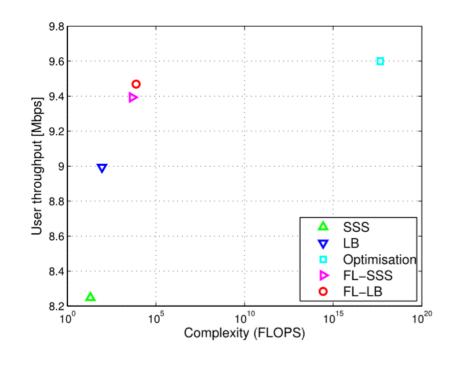
$$R_{u} \text{ is the achieved data rate of user } u.$$

- However, centralized optimization requires an excessive amount of processing time!
- Does not suit real-time network implementation

Fuzzy Logic-Based Method

Challenges:

- Access point selection in HyFi
- Low computational complexity


Two-stage algorithm [6]:

- Stage 1: determine WiFi users (using fuzzy logic)
- Stage 2: assign the remaining users to LiFi

Rule No.	Operator	Required rate	Wi-Fi SNR	SNR var. of	Activity of	Assigned to
				adj. Li-Fi APs	adj. Li-Fi APs	Wi-Fi
1	AND	-	High	Low	High	Positive
2	AND	Low	not Low	Low	High	Positive
3	AND	-	High	Low	Med	Neutral
4	AND	Med	not Low	Med	High	Neutral
5	OR	-	-	High	Low	Negative
6	AND	High	Low	-	-	Negative

Limitations:

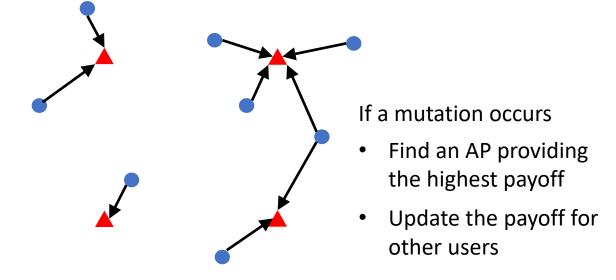
- Sub-optimal
- Sensitive to change of network environment

[6] **X. Wu**, M. Safari and H. Haas, "Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks," *IEEE Transactions on Communications*, vol. 65, no. 12, pp. 5375-5385, Dec. 2017.

Game Theory-Based Method

- Both the optimization and fuzzy logic-based methods make the decisions *once and for all*.
- In contrast, the GT-based method [7] lets each user keep looking for a better *payoff*, which is the user's satisfaction:

$$\pi_{i,u} = \min\left\{\frac{\rho_{i,u}r_{i,u}}{\hat{R}_u}, 1\right\}$$


 When the user's payoff is below the average payoff, a mutation probability is set to allow the user to choose a new AP

Game Theory-Based Method

- Both the optimization and fuzzy logic-based methods make the decisions *once and for all*.
- In contrast, the GT-based method [7] lets each user keep looking for a better *payoff*, which is the user's satisfaction:

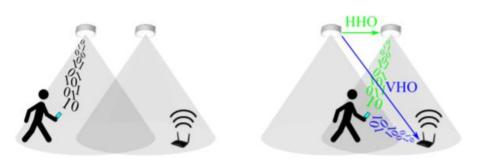
$$\pi_{i,u} = \min\left\{\frac{\rho_{i,u}r_{i,u}}{\hat{R}_u}, 1\right\}$$

 When the user's payoff is below the average payoff, a mutation probability is set to allow the user to choose a new AP

• **Deep learning** methods, which use a similar concept of payoff but can adapt its strategy to the network environment, are also applicable.

Handover

The handover issue is particularly challenging for HyFi due to:

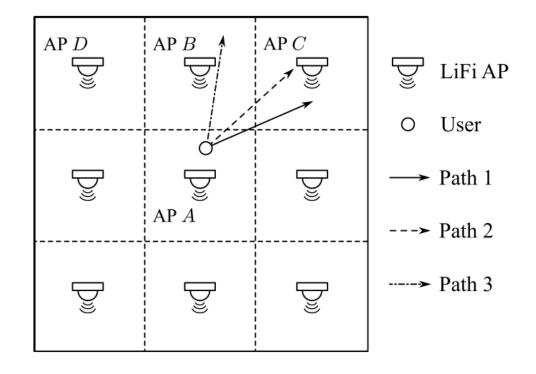

- Ultra-dense networks ⇒ frequent handovers
- Heterogeneous networks ⇒ overlapped coverage
- Light-path blockages ⇒ connectivity loss

Handover types:

- Horizontal handover (same air interface, same route)
- Vertical handover (change air interface, same route)
- Diagonal handover (change both air interface and route)

a) a stationary user experiencing light-path blockages

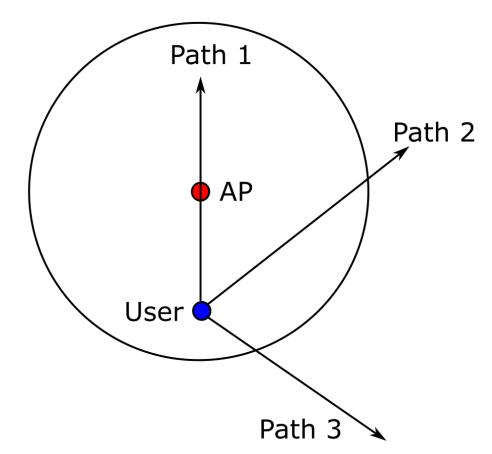
b) a mobile user acrossing cell borders


Horizontal handover for LiFi

Challenges:

- > Relatively small coverage range, usually 2-3 meters in diameter
- > Considerably frequent handovers, even when the user moves in a moderate speed

To reduce the HHO rate:


- > Optimize the separation between APs
 - The ideal coverage area of a LiFi AP is 2 to 8 m², depending on the user density and handover overhead
- > Soft handover
 - In the case of non-overlapping coverage
- > Handover skipping
 - Trajectory based (conventional)
 - RSS based

RSS-based handover skipping

- Received signal strength (RSS) is commonly used in the existing handover protocol.
- RSS indicates the distance between the user and the AP but cannot reflect the movement direction.
- The rate of change in RSS can be used to indicate the user's movement direction.
- Combining RSS and its rate of change to allow the user to skip some APs [8]:

$$\Gamma_i = P_i^{(t_0)} + \lambda \Delta P_i$$

where λ can adjust the dominance between RSS and its rate of change

Vertical handover between LiFi and WiFi

The user usually requires a VHO between LiFi and WiFi when:

- RSS is below threshold
- The current host AP is congested
- LiFi connectivity is lost or restored

Reasons for LiFi connectivity loss:

- The light-path is blocked by opaque objects, such as human bodies and furniture
- The PD's receiving orientation is significantly deviated from the LoS path.

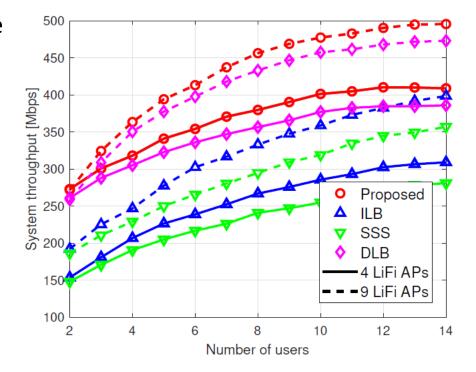
To avoid unnecessary VHOs:

- Markov decision process
- Predict parameters (e.g. interruption duration, message sizes, delay, queue length and data rate)

These methods:

- Adjust the hannel HHO or VHO? sed on
- Not cons between and VHO

Mobility-Aware Load Balancing


Challenge:

 Conventional LB does not consider user mobility, which would significantly compromise the network performance

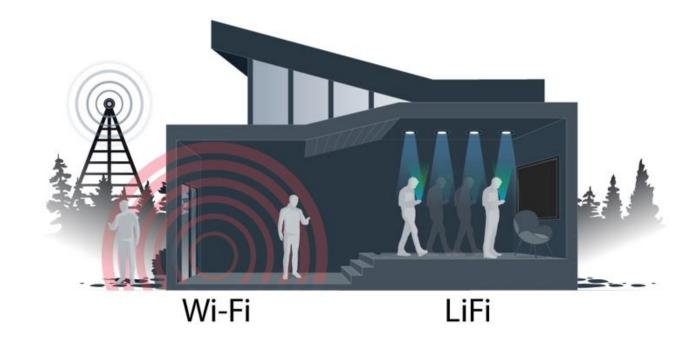
Solution:

• Jointly consider LB and the handover cost [9]:

$$F_{\text{ILB}}\left(\boldsymbol{\chi}^{(t)},\boldsymbol{\rho}^{(t)}\right) = \sum_{u} \sum_{i} \chi_{i,u}^{(t)} \log\left(\rho_{i,u}^{(t)} r_{i,u}^{(t)}\right)$$

$$F_{\text{prop.}}(\boldsymbol{\chi},\boldsymbol{\rho}) = \sum_{u} \sum_{\kappa} \chi_{\kappa,u} \log\left(\sum_{\alpha} \tau_{\kappa,u}^{\alpha} r_{u}^{\alpha} \min\{\rho_{u}^{\alpha}, 1 - \varrho_{u}^{\alpha}\}\right)$$

Network access type (LiFi only, WiFi only, LiFi/WiFi)


Measure the HO cost due to light-path blockage

Measure the HO cost due to mobility

[9] **X. Wu** and H. Haas, "Load Balancing for Hybrid LiFi and WiFi Networks: To Tackle User Mobility and Light-Path Blockage," *IEEE Transactions on Communications*, vol. 68, no. 3, pp. 1675-1683, Mar. 2020.

Outline

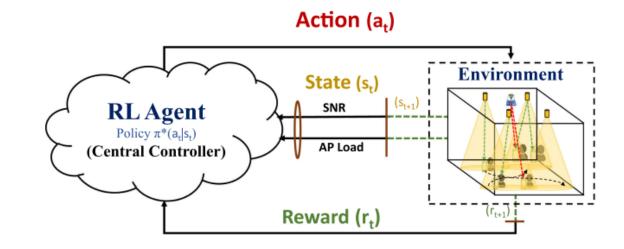
- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- > Parallel transmission LiFi
- Applications and Summary

Machine Learning

> Supervised learning

- Trained by samples (i.e., known answers)
- Used for classification, regression, prediction

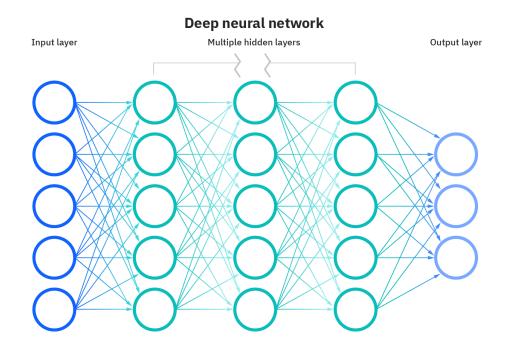
Unsupervised learning


- Analyse correlation and relationships
- Used for clustering, dimension reduction

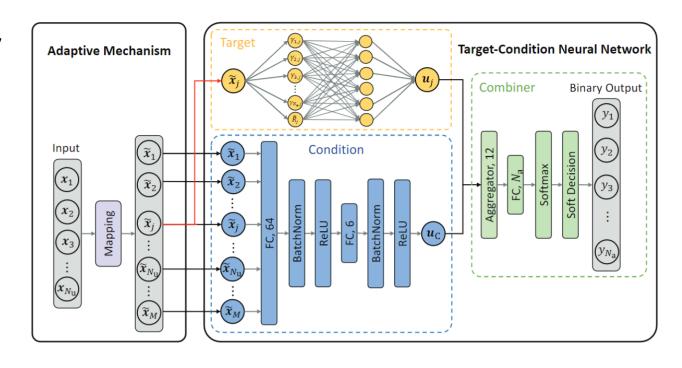
> Reinforcement learning

- Explore different options (trial and error)
- Used to find the optimal solution

Apply RL in hybrid network management


- > Method
 - State space
 - Action space
 - Reward

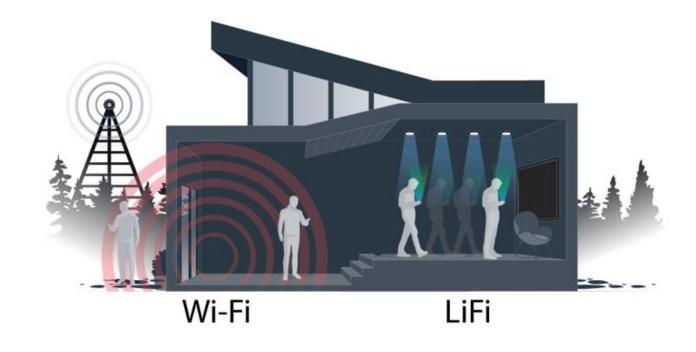
- > Limitations:
 - Needs iterative actions to complete the training process
 - Needs retraining when the network environment changes (especially the user number)
- ➤ How about using deep neural network (DNN)?


Apply DNN in hybrid network management

- > A commonly used supervised learning method
- > To apply DNN
 - Input nodes: $N \times N_{\rm UE}$ elements to express the parameters of each user
 - Output nodes: $N_{\rm AP} \times N_{\rm UE}$ elements to express the AP connection of each user
- ➤ However, in DNN, the numbers of input and output nodes are *fixed*
- ➤ Question: is it possible to create an DNN that is *adaptive to the user number*?

From DNN to Target-Condition NN [11]

- Determine APS for a target user only (thus the number of output nodes is fixed for one user)
- Other users are considered as a condition
- Map any number of condition users to a fixed number of users¹ through generating an image of the users

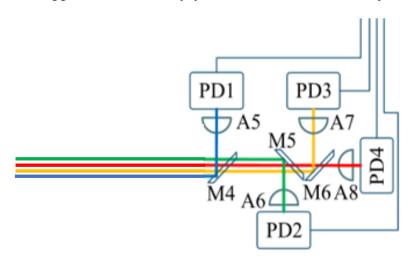

- This mapping process does not affect the APS for the target user!
- Does not need retraining when the user number changes!

[11] H. Ji, Q. Wang, S. Redmond, and **X. Wu**, "Adaptive Target-Condition Neural Network: DNN-aided load balancing for Hybrid LiFi and WiFi Networks," (submitted to) IEEE Journal Sel. Areas Commun., 2022.

¹The maximum number of users that can be supported by the network.

Outline

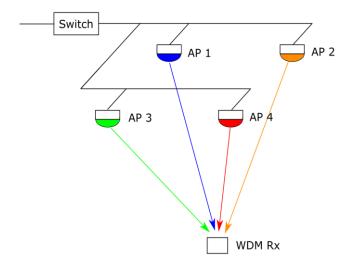
- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- ➤ Parallel transmission LiFi
- Applications and Summary


Serial Transmission vs Parallel Transmission

- Restricted by the conventional TCP, each user can only be served by one AP, i.e., serial transmission
- Enabled by the new multi-path TCP (MPTCP), each user can be served by multiple
 APs at the same time
- In contrast to serial transmission, parallel transmission will:
 - > Boost link data rate
 - > Reduce handover
 - > Enhance network flexibility
- Question: how to realize parallel transmission LiFi?

Parallel Transmission LiFi

Conventional LiFi WDM [1]:


- Based on dichroic mirrors
- **Not suitable** for distributed transmitters
- *Rely on* precise alignment
- *Difficult* to support user mobility

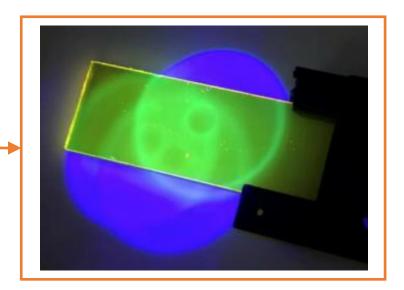
Convectional LiFi WDM receiver

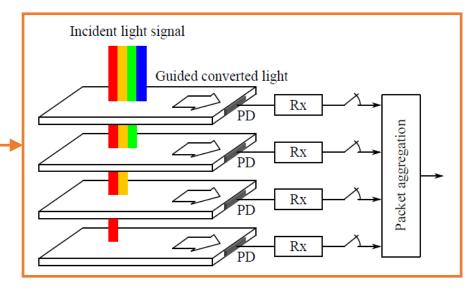
Challenges:

- How?
- Different APs serve one user at the same time
- Does not need alignment
- Support user mobility

Concept of PT-LiFi

[1] R. Bian, I. Tavakkolnia and H. Haas, "15.73 Gb/s Visible Light Communication With Off-the-Shelf LEDs," *Journal of Lightwave Technology*, vol. 37, no. 10, pp. 2418-2424, May 2019.


WDM receiver for PT-LiFi

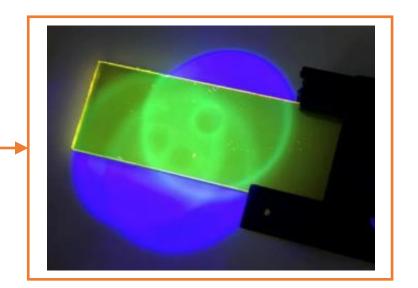

Florescent concentrator

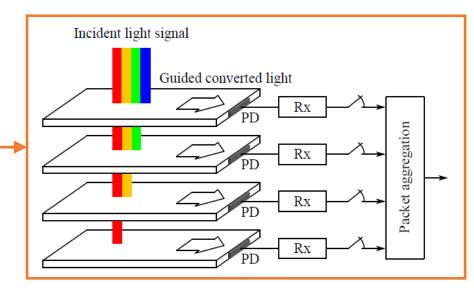
- Absorb one wavelength and convert it to another wavelength
- Break the etendue limit
- Limited bandwidth (~40 MHz)

Novel WDM receiver [12]

 Each concentrator absorbs a certain wavelength and let others go through

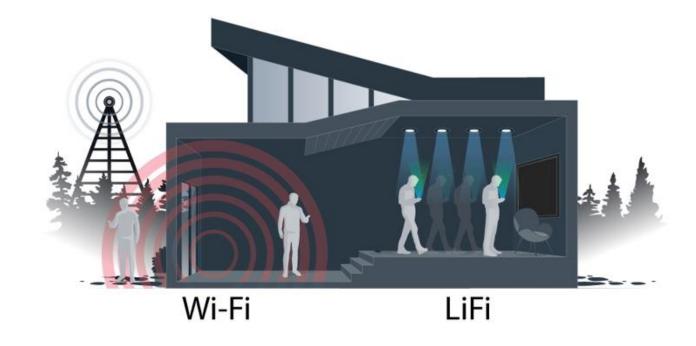
WDM receiver for PT-LiFi


Florescent concentrator


- Absorb one wavelength and convert it to another wavelength
- Break the etendue limit
- Limited bandwidth (~40 MHz)

Novel WDM receiver [12]

- Each concentrator absorbs a certain wavelength and let others go through
- Concentrators are stackable and thus the device size can remain the same


Parallel transmission LiFi can *double* the link capacity of conventional LiFi.

Outline

- ➤ Introduction to HyFi (Hybrid LiFi and WiFi networks)
- > Hybrid network management
 - Access point selection
 - Handover
 - Mobility-aware load balancing
- > Artificial Intelligence
- > Parallel transmission LiFi
- ➤ Applications and Summary

Applications

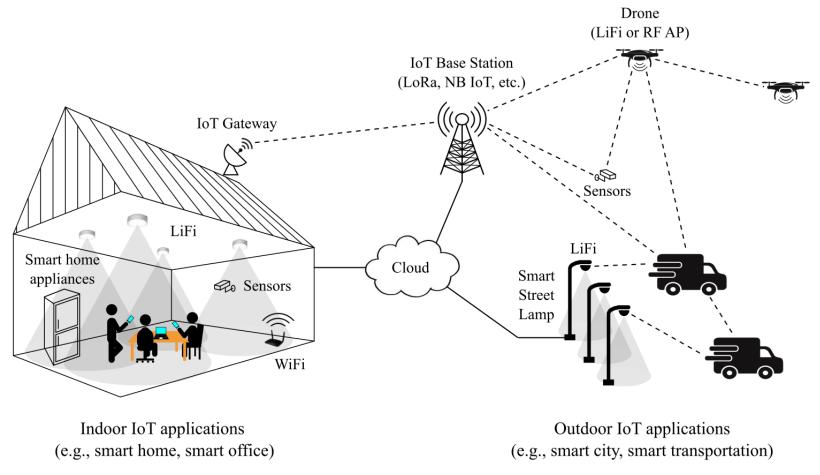
Communication based

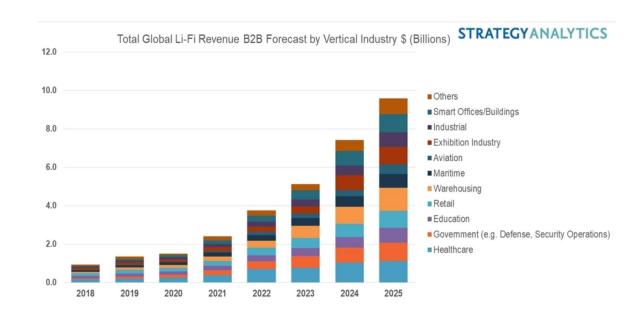
- High data rate (4K, VR, holographic display)
- High density (airport, stadium)

Functional

- Indoor positioning (localization, navigation)
- Physical layer security (secure communication)

Advanced


- Consumer IoT (smart home, wearables)
- Industrial IoT (smart factory, smart grid, smart city)


Application scenarios

• In addition to provide high speed transmission, HyFi can well support IoT and be applied in both indoor and outdoor scenarios.

Summary

- Along with the looming spectrum crunch in RF, LiFi has emerged in recent years as a promising technology for indoor wireless communications.
- At the mean time, WiFi continues its wide deployment in daily life.
- The coexistence of LiFi and WiFi is gaining momentum with the roll-out of LiFi commercial products from companies such as pureLiFi and Signify.
- Located in the same local area, LiFi and WiFi can be readily managed through a central control unit, forming HyFi.
- Combining the high data rate of LiFi and the ubiquitous coverage of WiFi, HyFi is able to provide greater network performance than a single wireless technology.
- Research on implementing HyFi in realistic environments and optimizing the network performance is still underway.

Thank you for your attendance!

xiping.wu@ucd.ie