

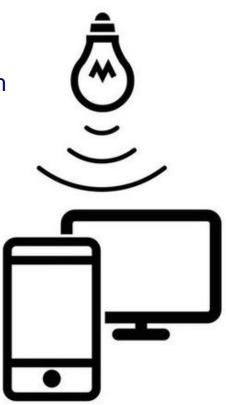
Signal Shaping ' \ Optimization for Nonlinear VLC Systems

Dr. Ling Xintong 凌昕彤 xtling@seu.edu.cn School of Information Science and Engineering Southeast University National Mobile Communications Research Laboratory (NCRL)

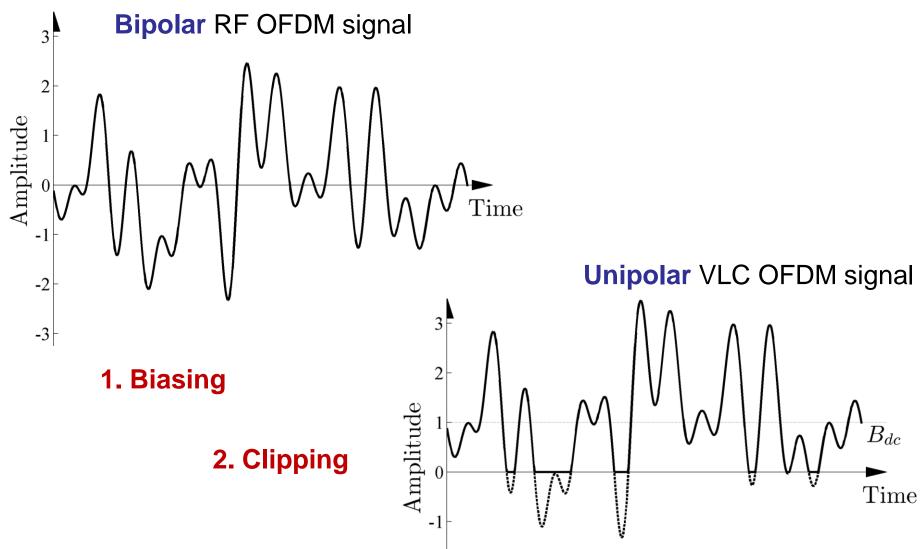
- 1. Introduction
- 2. Optimal Signal Shaping for Single LED
- 3. Optimal Biased Beamforming for Multi-LED
- 4. Recent Advances
- 5. Conclusions

Introduction

- Benefits of visible light communication (VLC)
 - Vast spectrum resources ⇒ OFDM for broadband system
 - Simple implementation ⇒ DCO-OFDM
 - High spatial reuse
 - Enhanced security
 - Illumination-communication dual functions
- VLC signals and features
 - Intensity modulation and direct detection (IM/DD)
 - Real and nonnegative intensity signals
 - ⇒ require a unipolar VLC OFDM signal

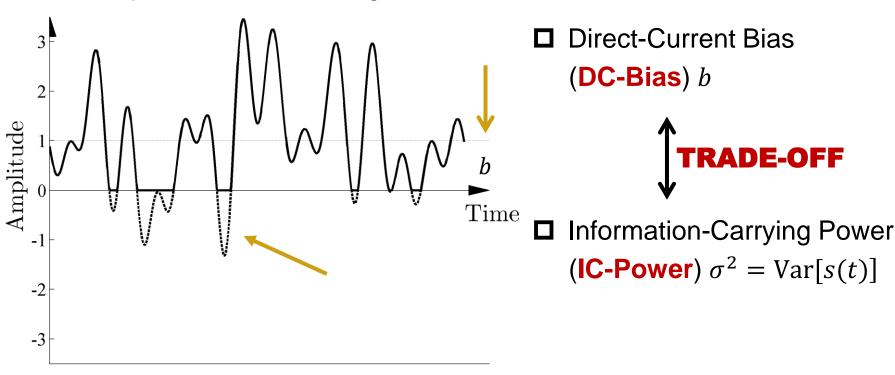


From Bipolar to Unipolar



Bias-Power Trade-off

Unipolar VLC OFDM signal

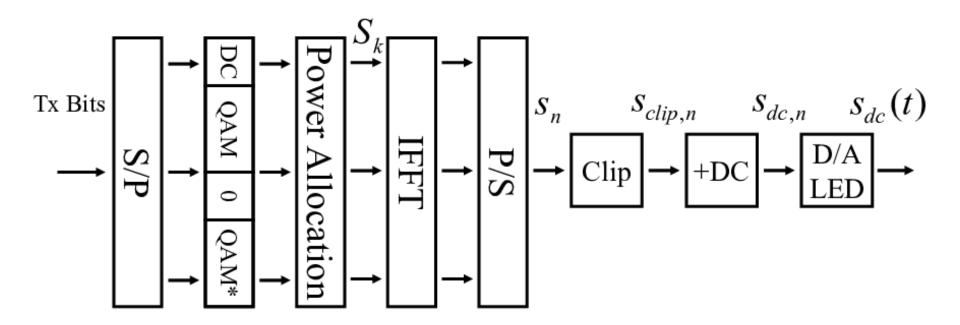


- High DC bias causes a waste of power.
- Low DC bias causes a severe clipping distortion.
- Trade-off between power consumption and clipping distortion.

- 1. Introduction
- 2. Optimal Signal Shaping for Single LED
- 3. Optimal Biased Beamforming for Multi-LED
- 4. Recent Advances
- 5. Conclusions

System Model

DCO-OFDM transmitter model



System Model

DCO-OFDM transmitter model

Optical channels

$$Y_k = H_k S_{dc,k} + N_k$$

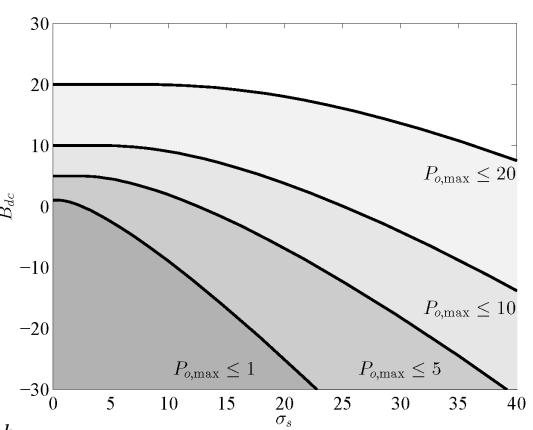
- Flat channels
- Dispersive channels

Optical power constraint

$$P_o(b, \sigma_s) = \mathbb{E}[s_{dc}(t)] \le P_{o, \text{max}}$$

- Where
- $P_o(b, \sigma_s) = \sigma_s \phi(b/\sigma_s) + bQ(b/\sigma_s) \neq b$
- Usually, the optical power is not equal to the bias.
- Clipping process

$$s_{clip,n} = \text{clip}[s_n; -b] = \begin{cases} s_n & s_n > -b \\ -b & s_n \le -b. \end{cases}$$



Clipping Model

Lemma 1 [Bussgang'1952]

The clipping process can be modeled in the frequency domain as

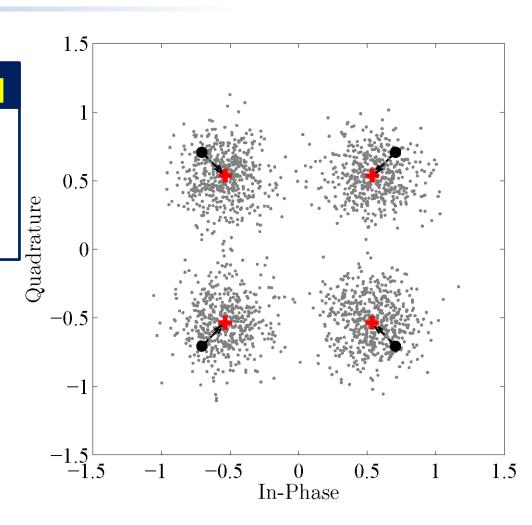
$$S_{clip,k} = aS_k + N_{clip,k}.$$

Attenuation factor

$$a = 1 - Q(b/\sigma_s)$$

- Clipping noise $N_{clip,k} \sim \mathcal{CN}(0, \sigma_{clip}^2)$
- Clipping noise power [Dimitrov'2012]

$$\sigma_{clip}^{2} = \sigma_{s}^{2} + (b^{2} - \sigma_{s}^{2})Q(b/\sigma_{s})$$
$$-b\sigma_{s}\phi(b/\sigma_{s}) - \sigma_{s}^{2}Q(-b/\sigma_{s})^{2}$$
$$-(\sigma_{s}\phi(b/\sigma_{s}) - bQ(b/\sigma_{s}))^{2}$$



Clipping Model

- Impacts of nonlinear clipping process
 - Shrinkage of the signal power
 - Clipping noise
- The signal-to-noise-and-distortion ratio (SNDR) at carrier k:

SNDR_k =
$$\frac{\text{Effective Signal Power}}{\text{Clipping Noise Power} + \text{Background Noise Power}}$$
$$= \frac{\left|H_k\right|^2 a^2 \sigma_s^2}{\left|H_k\right|^2 \sigma_{clip}^2 + \sigma_n^2}$$

where

- Channel gain at carrier k: H_k
- Attenuation factor: $a = 1 Q(b/\sigma_s)$
- Information-carrying power: σ_s^2
- Background noise power: σ_n^2
- Clipping noise power: $\sigma_{clip}^2 = \sigma_s^2 + (b^2 \sigma_s^2)Q(b/\sigma_s) b\sigma_s\phi(b/\sigma_s)$ $-\sigma_s^2Q(-b/\sigma_s)^2 (\sigma_s\phi(b/\sigma_s) bQ(b/\sigma_s))^2$

- Under the optical power constraint
- Goal: maximize the achievable rate R
- Optimization variables:
 - DC bias b
 - Information-carrying power σ_s^2
- Our problem is

maximize
$$R = \sum_{k=1}^{K-1} \log(1 + \text{SNDR}_k)$$

subject to $P_o(b, \sigma_s) \leq P_{o, \text{max}}$

- Recall that
 - $SNDR_k = \frac{|H_k|^2 a^2 \sigma_s^2}{|H_k|^2 \sigma_{clip}^2 + \sigma_n^2}$
 - Optical power $P_o(b, \sigma_s) = \sigma_s \phi(b/\sigma_s) + bQ(b/\sigma_s)$

maximize
$$R = \sum_{k=1}^{K-1} \log(1 + \text{SNDR}_k)$$

subject to $P_o(B_{dc}, \sigma_s) \leq P_{o, \text{max}}$

- Define the **optical SNR** $\gamma_o = |H|^2 P_{o,\text{max}}^2 / \sigma_n^2$
- Introduce a negative normalized DC bias $x = -b/\sigma_s$
- Reformulate the problem as an unconstrained problem with only one variable:

maximize SNDR_o(x) =
$$\frac{Q^{2}(x)}{q_{clip}(x) + q_{o}^{2}(x)\gamma_{o}^{-1}}$$

where

$$- q_o(x) = \phi(x) - xQ(x),$$

$$- q_{clip}(x) = (1 + x^2)Q(x) - (1 + x^2)Q^2(x) + 2x\phi(x)Q(x) - x\phi(x) - \phi^2(x).$$

maximize SNDR_o(x) =
$$\frac{Q^{2}(x)}{p_{clip}(x) + p_{o}^{2}(x)\gamma_{o}^{-1}}$$

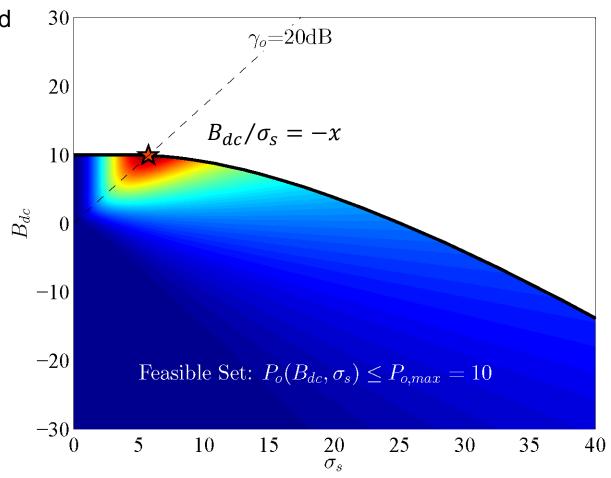
Theorem 1 (Optimal Bias) [Ling'TSP2016]

SNDR $_o(x)$ is a **quasiconcave** function of x. The optimization problem admits a **unique optimal solution** given by

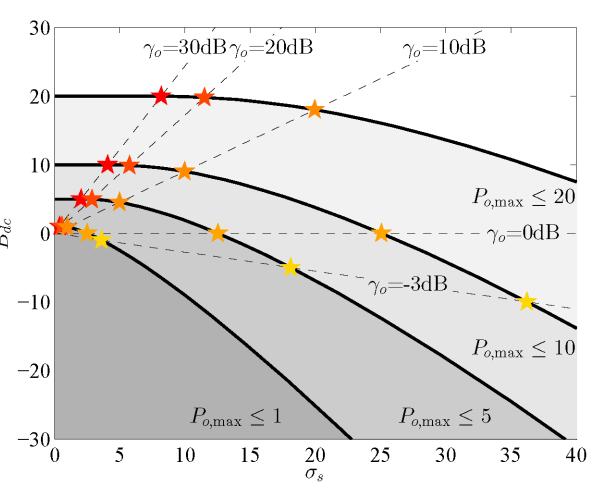
$$x_o^{\star} = arg_x f_o(x) = 0.$$

- $f_o(x) = (1 \gamma_o^{-1})(g(x) xQ(x)) + x$ is a monotonically **increasing** function with the following properties:
 - If $\gamma_0 > 1$, $f_0(x)$ is convex;
 - If $\gamma_o = 1$, $f_o(x)$ is linear;
 - If $\gamma_o < 1$, $f_o(x)$ is concave;
- The optimal IC-power $\sigma_s^{\star} = P_{o,\text{max}}/p_o(x_o^{\star})$
- The optimal DC-offset $B_{dc}^{\star} = P_{o,max}(1 \gamma_o^{-1})$ in closed form.

 The given DC-offset and IC-power is globally optimal indeed.



- The given DC-offset and IC-power is globally optimal indeed.
- b^* is increasing in γ_o ; σ_s^* is decreasing in γ_o .
- A high DC-offset should be used at high SNR; a good low DC-offset should be used at low SNR.
- $P_o(b^*, \sigma_s^*) = P_{o, \max}$, indicates the illumination level is constant.
- x_o^* only depends on γ_o , and is irrelevant to the power budget $P_{o,\text{max}}$.

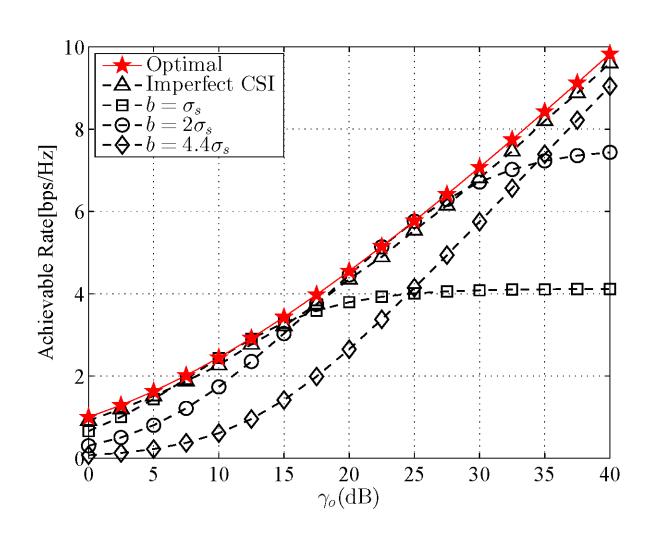


Numerical Results

Parameters:

- $\gamma_o = |H|^2 P_{o,\text{max}}^2 / \sigma_n^2$
- Number of subcarriers2K = 128
- AWGN
- Target BER = 10⁻⁵
- The schemes
 - $-b=2\sigma_s$
 - $-b = 4.4\sigma_s$

correspond to 7dB and 13dB DC-offset defined in [Armstrong'CL2008]

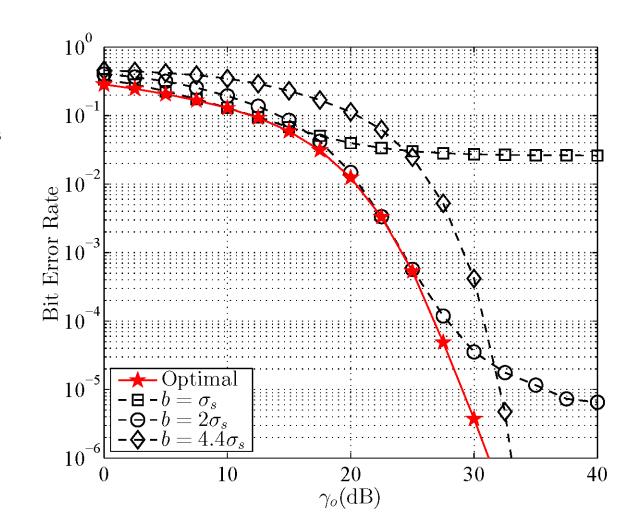


Simulation Results

Parameters:

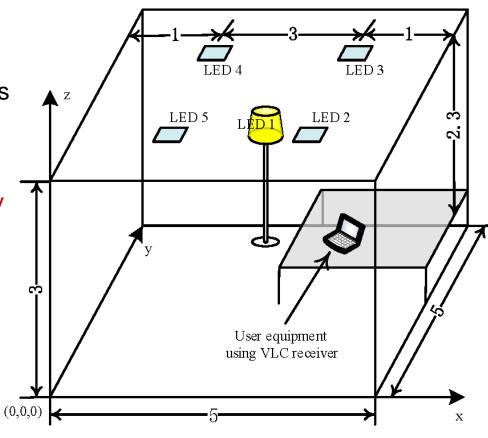
- $\quad \gamma_o = |H|^2 P_{o,\text{max}}^2 / \sigma_n^2$
- Number of subcarriers2K = 128
- AWGN
- 16QAM
- The schemes
 - $-b=2\sigma_s$
 - $-b=4.4\sigma_s$

correspond to 7dB and 13dB DC-offset defined in [Armstrong'CL2008]



- 1. Introduction
- 2. Optimal Signal Shaping for Single LED
- 3. Optimal Biased Beamforming for Multi-LED
- 4. Recent Advances
- 5. Conclusions

- Multi-LED VLC
 - Distributed illumination light sources
 - Seamless coverage for both communication & illumination
 - Higher SNR & better service quality
 - Robust to blockage and shadowing
 - Flexibility for dimming control



Call for a coordinated multi-LED transmission design

Motivation

- higher rates and better communication quality
- Simple implementation for broadband applications
- Seamless coverage for communication and illumination
- Multiple LEDs + Multicarrier ⇒ VLC

Questions:

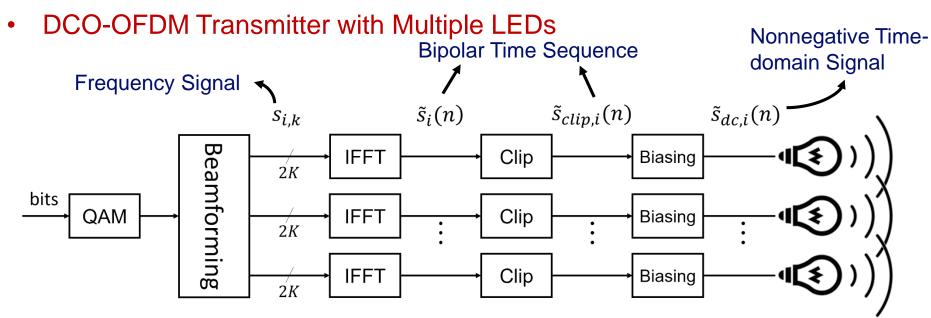
- How to model the nonlinear clipping process?
- How to design the beamforming vectors for all LEDs?
- How to set the DC bias of each LED?

Biased Beamforming:

- Beamforming vectors $\mathbf{w}_k \triangleq \{w_{ik}\}$
- DC bias b ≜ $\{b_i\}$
- Information-Carrying power $σ ≜ {σ_i}$

Require a joint design

System Model



VLC Channel model:

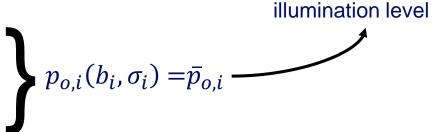
$$r_k = \mathbf{h}_k^H \mathbf{s}_{dc,k} + \eta_k, k = 1, ..., K - 1$$

- Flat channel (but the channels of each LED may be different)
- Dispersive channel (See [Ling'JSAC2018] for details)

LEDs: i = 1, ..., NCarriers: k = 0, ..., 2K - 1Effective Carriers: k = 1, ..., K - 1(Due to the Hermitian symmetry.)

Optical Power

- Human-perceived brightness ⇒ average optical power
- Average optical power of LED *i*: $p_{o,i}(b_i, \sigma_i) = \mathbb{E}[\tilde{s}_{dc,i}(n)]$
 - A function of DC bias b_i and information-carrying power σ_i
 - Usually, $p_{o,i}(b_i, \sigma_i) = \mathbb{E}[\tilde{s}_{dc,i}(n)] \neq b_i$ due to the asymmetric clipping
- The constant optical power constraint is due to
 - Illumination requirement
 - Dimming control
 - Eye protection
 - Power saving



Per-LED optical power constraint:

$$-p_{o,i}(b_i,\sigma_i) = \bar{p}_{o,i} \quad i = 1, \dots, N_t$$

– The vector version: $\mathbf{p}_o(\mathbf{b}, \boldsymbol{\sigma}) = \overline{\mathbf{p}}_o$

$$\mathbf{p}_{o}(\mathbf{b}, \boldsymbol{\sigma}) \triangleq \left\{ p_{o,i}(b_{i}, \sigma_{i}) \right\}_{i=1}^{N_{t}}$$
: the optical power of each LED

 $\bar{p}_{o,i}$: some specific

Biased Beamforming Design

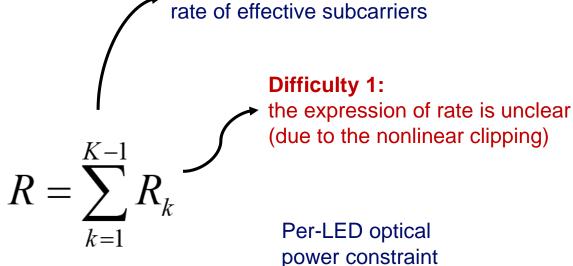
Optimization variables:

- b: DC-bias vector
- σ: Information-Carrying power (i.e., useful power)
- {w_k}: beamforming vector

$$\max_{\mathbf{b}, \boldsymbol{\sigma}, \{\mathbf{w}_k\}}$$

subject to

The relationship between IC-Power σ_i and beamformer \mathbf{w}_k



$$\mathbf{p}_{o}(\mathbf{b},\boldsymbol{\sigma}) = \mathbf{p}_{o}$$

$$\sigma_i^2 = \frac{1}{K} \sum_{k=1}^{K-1} \left[\mathbf{w}_k \mathbf{w}_k^H \right]_{ii}, i = 1, \dots, N_t$$

Objective: Maximize the sum

Nonlinear Clipping

- Question: what is the expression of rate R?
 - A model to characterize the nonlinear clipping process?
 - The relationship between the clipped signal $\mathbf{s}_{dc,k}$ and the original one \mathbf{s}_k ?
- Hint: use a linear model to approximate the nonlinear clipping process
- For a single LED, the clipping model based on the Bussgang theorem in the frequency domain [Dimitrov'TCOM12], [Chen'TCOM2012]:

$$s_{dc,k} = as_k + n_{clip,k}, \qquad k = 1, \dots, K-1$$

- A linear attenuation factor a
- The clipping noise $n_{clip,k}$ uncorrelated with the signal s_k
- The clipping noise is approximated to a Gaussian distribution when the number of subcarriers is large
- Question: What if Multi-LEDs?

Clipping Model for multi-LEDs

Generalized Bussgang theorem for multiple LEDs

Theorem 2 (Multi-LED Clipping Model)

The time-domain clipping process of multi-LEDs can be modeled in frequency domain as

$$\mathbf{s}_{dc,k} = \mathbf{A}\mathbf{s}_k + \mathbf{n}_{clip,k}, \qquad k = 1, \dots, K-1$$

where $\mathbf{A}(\mathbf{b}, \mathbf{\sigma}) = \mathbf{Diag}(\mathbf{a}) = \mathbf{Diag}\{1 - Q(b_i/\sigma_i)\}_{i=1}^{N_t}$ contains the attenuation factors, and $\mathbf{n}_{clip,k}$ is the vector of clipping noise obeying $\mathcal{CN}(\mathbf{0}, \mathbf{C}(\mathbf{b}, \mathbf{\sigma}))$. (Please see Theorem 1 in [Ling'JSAC2018] for details.)

- A linear attenuation matrix $A(b, \sigma)$
- The vector of clipping noise $n_{clip,k}$ uncorrelated with the signal s_k
- The Gaussian approximation is still available
- The clipping noises from multiple LEDs are mutually correlated
- Each term in covariance matrix $C(b, \sigma)$ is a piecewise function of b and σ

Effective SNR (SNDR)

• Simplified the frequency-domain signal model: η_k : Background Noise

$$r_k = \mathbf{h}_k^H \mathbf{s}_{dc,k} + \eta_k$$

$$= \mathbf{h}_k^H (\mathbf{A} \mathbf{s}_k + \mathbf{n}_{clip,k}) + \eta_k$$

$$= \mathbf{h}_k^H (\mathbf{A} \mathbf{s}_k + \mathbf{h}_{clip,k}) + \eta_k$$
Via the clipping model in Thoerem 1

SNDR (signal-to-noise-plus-distortion ratio) at subcarrier k:

SNDR_k
$$\triangleq \frac{\text{Effective Signal Power}}{\text{Clipping Noise Power} + \text{Background Noise Power}}$$

$$= \frac{\mathbf{h}_k^H \mathbf{A}(\mathbf{b}, \sigma) \mathbf{w}_k \mathbf{w}_k^H \mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k}{\mathbf{h}_k^H \mathbf{C}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}$$

$$= \frac{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}$$

$$= \frac{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}$$

$$= \frac{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}$$

$$= \frac{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}{\mathbf{A}(\mathbf{b}, \sigma) \mathbf{h}_k + \sigma_{\eta}^2}$$

Achievable rate at subcarrier k:

$$R_k = \log(1 + \text{SNDR}_k)$$

Biased Beamforming Problem

Optimization variables:

- b: DC-bias vector
- σ: Information-Carrying power (i.e., useful power)
- {**w**_k}: beamforming vector

Difficulty 3: joint design

$$\underset{\mathbf{b}, \boldsymbol{\sigma}, \{\mathbf{w}_k\}}{\text{maximize}}$$

subject to

The relationship between IC-Power σ_i and beamformer \mathbf{w}_k

Objective: Maximize sum rate of effective subcarriers

Difficulty 2:

the objective is nonconvex and highly nonlinear.

$$R = \sum_{k=1}^{K-1} \log \left(1 + \frac{\mathbf{h}_k^H \mathbf{A}(\mathbf{b}, \boldsymbol{\sigma}) \mathbf{w}_k \mathbf{w}_k^H \mathbf{A}(\mathbf{b}, \boldsymbol{\sigma}) \mathbf{h}_k}{\mathbf{h}_k^H \mathbf{C}(\mathbf{b}, \boldsymbol{\sigma}) \mathbf{h}_k + \sigma_{\eta}^2} \right)$$

$$\mathbf{p}_{o}(\mathbf{b}, \boldsymbol{\sigma}) = \mathbf{p}_{o}$$
 Per-LED optical power constraint

$$\boldsymbol{\sigma}_{i}^{2} = \frac{1}{K} \sum_{k=1}^{K-1} \left[\mathbf{w}_{k} \mathbf{w}_{k}^{H} \right]_{ii}, i = 1, \dots, N_{t}$$

Optimal Beamformer

- Hint: search the optimal beamformer for fixed DC bias first.
- In this case, the optimal beamforming structure can be analytically characterized.
- Please see Theorem 2 in [Ling'JSAC2018] for details.

Remarks:

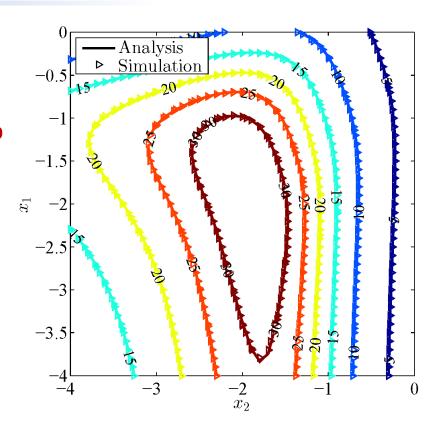
- The optimal beamforming structure in [Ling'JSAC2018] is suitable for both flat and dispersive channels.
- The uniform beamforming is optimal for flat channels.
- The optimal beamforming tends to be uniform at high SNR for dispersive channels.
- Question: How to set the bias?

Optimal Bias: Flat Channels

- Using the uniform beamforming.
- Normalized DC bias x: $x_i \triangleq -b_i/\sigma_i$
 - -Vector form: $\mathbf{x} \triangleq \{x_i\}_{i=1}^{N_t} = -\mathbf{Diag}^{-1}(\sigma)\mathbf{b}$
- Reduce the dimensions and reformulate the problem as an unconstrained problem by using the normalized DC bias x:

$$\max_{\mathbf{x}} \text{imize SNDR}(\mathbf{x})$$

- Notice: some super level sets are nonconvex ⇒
- Nonconvex problem, even simplified.
- Still difficult!



A two-LED simulation case with different normalized DC bias pairs.

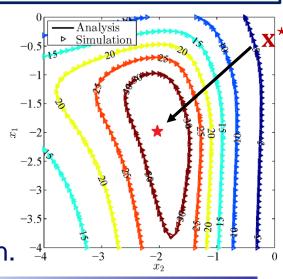
Optimal Bias: Flat Channels

The optimal DC bias can be analytically characterized for flat channels.

Theorem 3 (Optimal Biased Beamforming)

There exists a unique optimal solution $\mathbf{x}^* = \mathbf{x}^* \cdot \mathbf{1}$, where \mathbf{x}^* is the root of a monotone function $f(\mathbf{x}; \gamma_t)$ and γ_t is the total optical SNR. All the components of optimal solution are identical.

- -x is the vector of the normalized DC bias.
- A SURPRISE results: The optimal normalized DC bias of each LED is IDENTICAL!
- Only hold for flat channels.
- As the root of a monotone function, x^* can be found via the Newton method.
- Identical bias setting is easy for implementation.



Optimal Biased Beamforming

Closed-form biased beamforming in flat channels

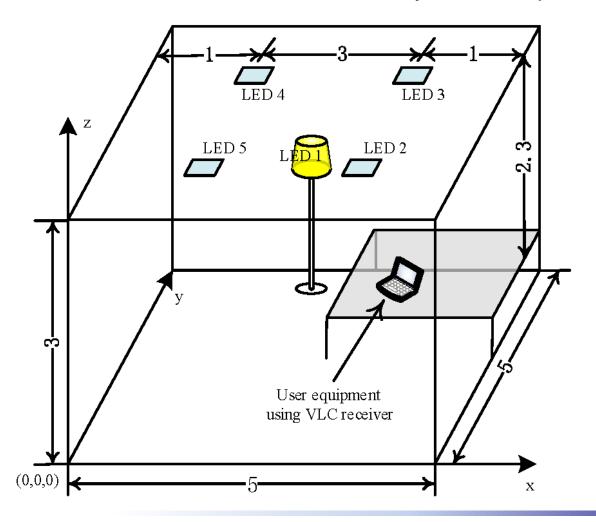
Corollary 1

- The optimal DC bias is $\mathbf{b}^* = \overline{\mathbf{p}}_o(1 \gamma_t^{-1})$.
- The optimal beamforming vectors are $\{\mathbf{w}_k^{\star}\} = \sigma^{\star} = \frac{1}{q_o(x^{\star})}\overline{\mathbf{p}_o}$.
- The optimal bias grows with optical SNR γ_t .
- The optimal IC power decreases with optical SNR γ_t .
- At high SNR, the clipping noise becomes the dominant factor that calls for a high DC bias.
- At low SNR, the background noise is the major distortion that calls for more IC power on effective signal.

 γ_t : Total optical SNR; $\overline{\mathbf{p}}_o$: required illumination levels for each LED; x^* : the optimal x revealed in Theorem 3.

Simulation Scenario

Configuration of the multi-LED DCO-OFDM system adopted in simulation.



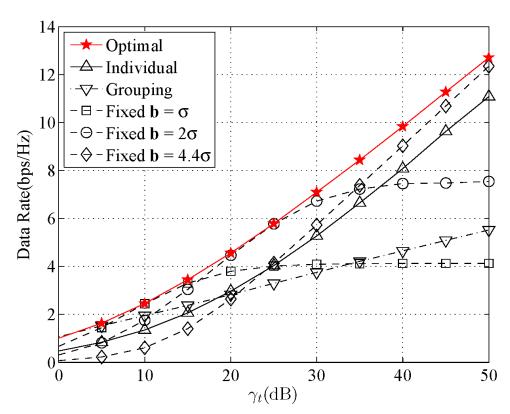
Simulation Results (Rate)

Parameters:

- -Flat Channel;
- -Channel bandwidth:100MHz;
- -The number of total subcarriers: 2K=512;

> Schemes:

- -"Optimal": the proposed optimal biased beamforming;
- -"Individual": applying the optimal bias derived for a single LED on each LED;
- -"**Grouping**": a half subcarriers are active on LED 1 and the other half are active on LED 2;
- -"Fixed bias": a pre-fixed bias level.



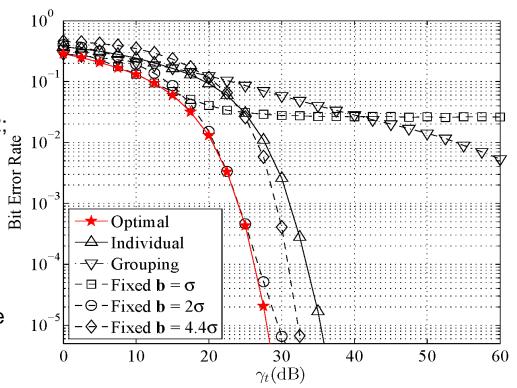
Simulation Results (BER)

Parameters:

- -Flat Channel;
- -Channel bandwidth:100MHz;
- -The number of total subcarriers: 2K=512;

> Schemes:

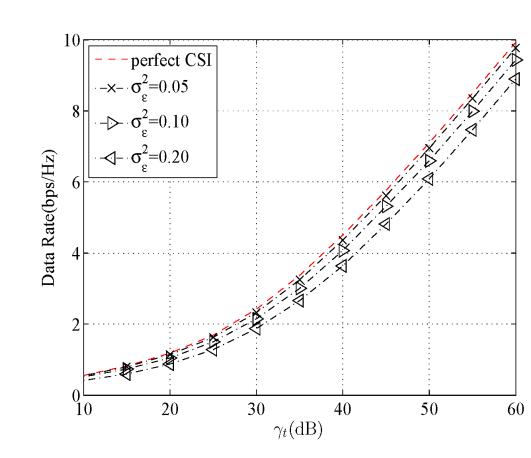
- -"Optimal": the proposed optimal biased beamforming;
- -"Individual": applying the optimal bias derived for a single LED on each LED;
- -"Grouping": a half subcarriers are active on LED 1 and the other half are active on LED 2;
- -"Fixed bias": a pre-fixed bias level.



Simulation Results (Sensitivity)

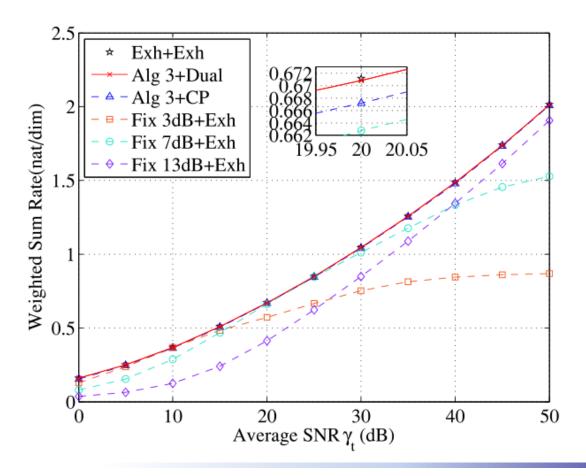
Parameters:

- -Dispersive Channel;
- -Channel bandwidth:100MHz;
- -The number of subcarriers: 2K=512;
- The channel coefficient here is no longer the actual \mathbf{h}_k but $\mathbf{h}_k + \boldsymbol{\varepsilon}$, where the error $\boldsymbol{\varepsilon}$ follows an independent complex Gaussian distribution with variance σ_{ε}^2 .



- 1. Introduction
- 2. Optimal Signal Shaping for Single LED
- 3. Optimal Biased Beamforming for Multi-LED
- 4. Recent Advances
- 5. Conclusions

- What if there exist multiple users?
- We proposed an iterative algorithm in [Ling'JLT2018].



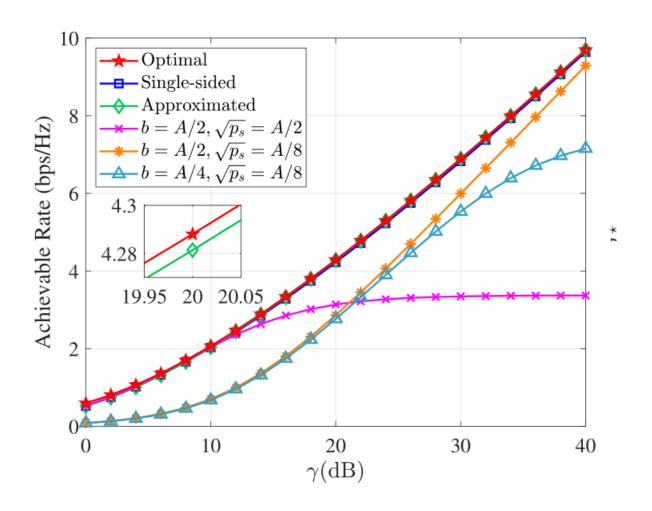
Upper Clipping

What about the impact of upper clipping?

$$s_{clip,n} = \text{clip}[s_n + b; A] = \begin{cases} A & s_n + b \ge A \\ s_n + b & 0 < s_n + b < A \\ 0 & s_n + b \le 0 \end{cases}$$

- This problem is also solved in [Ling'OE2020].
- The bias should be set to the midpoint of the dynamic range.
- We can also obtain an optimal power, given by the unique root of an increasing function.

Upper Clipping

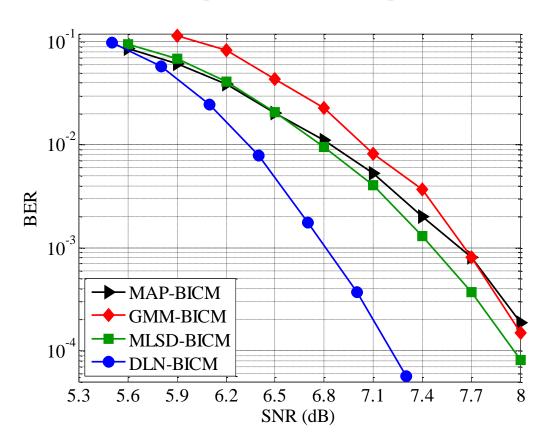


Coding System

Deep-Learning-Network-based BICM [He'TCOM2020]

Simulation Parameters:

- DLN-BICM
- LDPC code
- 16QAM
- 1024subcarrier



Effective to mitigate nonlinear distortion in VLC.

- 1. Introduction
- 2. Optimal Signal Shaping for Single LED
- 3. Optimal Biased Beamforming for Multi-LED
- 4. Recent Advances
- 5. Conclusions

Conclusions

- The signal shaping design is vital to IM/DD VLC.
- The single-LED system:
 - We jointly optimize the DC bias and power;
 - We obtain a globally optimal solution to the shaping design.
- The multi-LED system:
 - We introduce the concept of biased beamforming, a joint design of beamforming, DC bias, and IC power;
 - We analyze the clipping process for multi-LED VLC;
 - We find the optimal beamforming structure;
 - We achieve the globally optimal biased beamforming.
- The existence of upper clipping.
- The multi-user VLC system (DCO-OFDMA).
- The dispersive case is more complex and requires efficient methods.
- More effective receiving algorithms are called.

References

- Xintong Ling, Jiaheng Wang, Xiao Liang, Zhi Ding and Chunming Zhao, "Offset and power optimization for DCO-OFDM in visible light communication systems," *IEEE Trans. Signal Process.*, Vol. 64, no. 2, pp. 349-363, Jan. 2016.
- Xintong Ling, Jiaheng Wang, Xiao Liang, Zhi Ding, Chunming Zhao and Xiqi Gao, "Biased Multi-LED Beamforming for Multicarrier Visible Light Communications," *IEEE J. Sel. Areas Commun.*, Vol. 36, no. 1, pp. 106-120, Jan. 2018.
- Xintong Ling, Jiaheng Wang, Zhi Ding, Chunming Zhao and Xiqi Gao, "Efficient OFDMA for LiFi Downlink," *J. Lightw. Technol.*, Vol. 36, no. 10, pp. 1928-1943, May. 2018.
- Xintong Ling, Shuo Li, Pengfei Ge, Jiaheng Wang, Nan Chi, and Xiqi Gao, "Optimal DCO-OFDM signal shaping with double-sided clipping in visible light communications," *Optics Express*, vol. 28, no. 21, pp. 30391--30409, Oct. 2020.
- He Yuan, Ming Jiang*, Xintong Ling*, and Chunming Zhao, "Robust BICM Design for the LDPC Coded DCO-OFDM: A Deep Learning Approach," *IEEE Trans. Commun.*, Vol. 68, no. 2, pp. 713-727, Feb. 2020.

THE END THANKS!

Follow us if you are interested in our work. Contact email: xtling@seu.edu.cn

