

水下可见光通信系统

大连理工大学 林驰

目录 CONTENTS Part 01 研究背景 Background

Part 03 实验结果 Experiments Part 02 研究内容 Model

- 研究背景 -
- 研究内容 -
- 实验结果 -

PART 01

研究背景

- 研究背景 -

- 研究内容 -
- 实验结果 -

水下无线通信技术

课题背景

海珍品捕捞对潜 水员造成不可逆 转的伤害

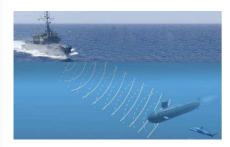
捕捞潜水员平均 年龄低于35岁

水下机器人抓取大赛

- 研究背景 -
- 研究内容 -
- 实验结果 -

课题背景

潜水员跳入水中后便"与世隔绝",只能依靠敲击和手势进行 交流,效率十分低下



亟需一种新型通信设备(轻便、高效、廉价、鲁棒性)

- 研究背景 -
- 研究内容 -
- 实验结果 -

常见水下通信技术

水声通信

- 带宽低
- ・速率低
- ・安全性差

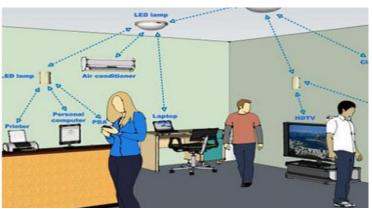
水下RF通信

- ・天线大
- ・ 费用高
- ・衰减大

水下无线通信技术

水下激光通信

- ・难对准
- · 危险性大
- 抗干扰弱


挑战:如何克服现有技术缺点,抵抗复杂环境 (水流、海浪、气泡、环境光)干扰,实现鲁棒通信?

- 研究背景 -
- 研究内容 -
- 实验结果 -

水下光通信技术



水下无线通信技术

LiFi通信

水下光通信

带宽高 体积小 价格低廉

携带头灯、 照明+通信 两不误、无 需额外设备

- 研究背景 -
- 研究内容 -
- 实验结果 -

PART 02

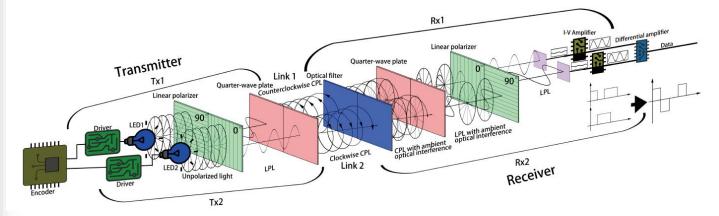
研究内容

- 研究背景 -
- 研究内容 -
- 实验结果 -

本文灵感来源

仿生学

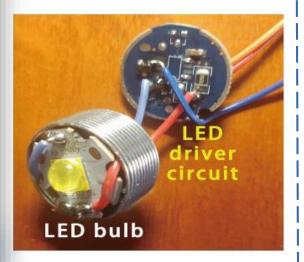
螳螂虾 (Mantis Shrimp) 具有极其敏锐的视觉,究其原因是使用圆偏振光通信,建立私有信道等。因此本文系统命名为Shrimp。

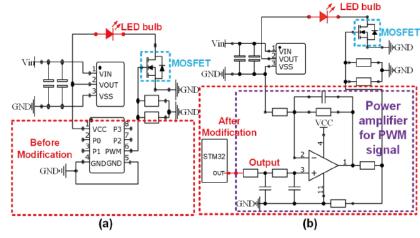


- 研究背景 -
- 研究内容 -
- 实验结果 -

系统总览

系统示意图 圆偏振光+双信道

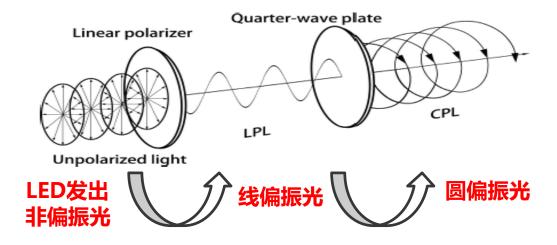

	组成元件	偏振状态转换
发送端	编码元件、驱动板、LED、线偏 振片、1/4波片	自然光线 二)偏振光 (LPL) 二)圆偏振光 (CPL)
接收端	滤光片、1/4波片、线偏振片、 放大器、差分放大器、解码元件	圆偏振光 (CPL)□>线偏振光 (LPL)



- 研究背景 -
- 研究内容 -
- 实验结果 -

发送端设计

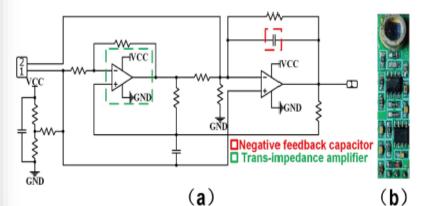
发送端器件和电路改装


- > 发射器对数据进行编码,并将LED发出的非偏振光转换为圆偏振光
- 修改驱动电路,增加光的开/关速率 (20kHZ->120kHz),以实现更高的数据传输速率

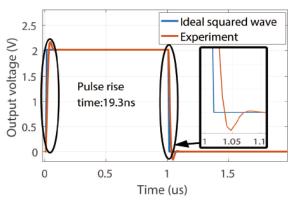
- 研究背景 -
- 研究内容 -
- 实验结果 -

生成圆偏振光

圆偏振光的独特优势

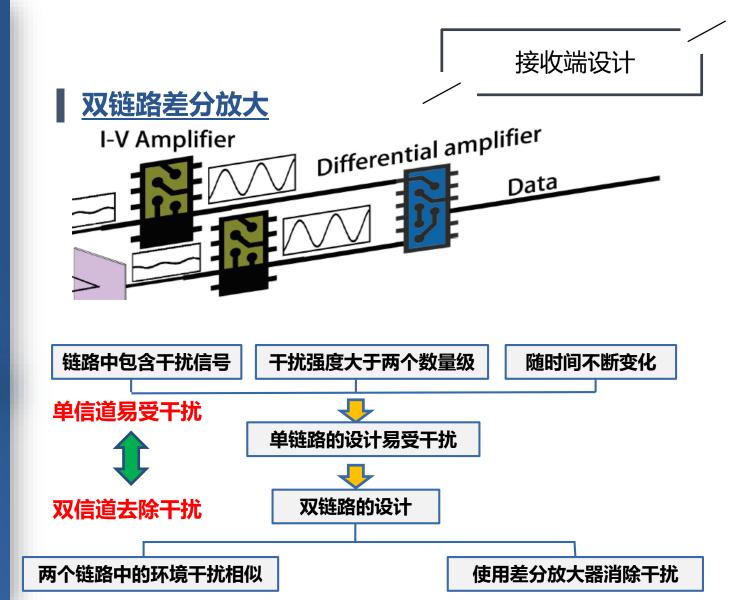

- CPL设计在水下通信中不需要紧密的收发器对准
- 双CPL链接在消除环境光干扰方面显示出独特的优势

- 研究背景 -
- 研究内容 -
- 实验结果 -


接收端设计

硅光电二极管电路和实物图

- 〉 使用<mark>商用</mark>硅光电二极管捕 获到达的光信号
- 设计并制造了一个I-V放 大器来放大电流,利用负 反馈电容器来减少输出信 号的噪声


电路测试实验

边沿上升时间仅为19.3 ns, 信号的波形受到的影响很小

- 研究背景 -
- 研究内容 -
- 实验结果 -

- 研究背景 -
- 研究内容 -
- 实验结果 -

系统成本和大小

系统成本低

总成本约 为77美元

两组LED和PCB	11美元
偏振片和玻片	 12美元
硅光电二极管	3美元
IV放大器和差分 放大器	40美元
防水盖和胶水	11美元

系统尺寸小

- ▶ 设备尺寸为9厘米×9厘米×13厘米
- > 重量为326克

- 研究背景 -
- 研究内容 -
- 实验结果 -

编解码方案

水下双极编码方案 (UBC)

契合双链路设计

Row Index	Operation						Encoding Data												
1	Original	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1
2	Initialization	+1	0	0	0	0	0	0	0	0	0	-1	+1	-1	0	0	0	0	+1
3	Insert V bit	+1	0	0	0	+ ₹	0	0	0	+y	0	-1	+1	- 1	0	0	0	- V	+1
4	<u>T</u>		S	ame	^ ^		Same		ame ^					1		Same		♪	
5	Insert B bit	+1	0	0	0	+7	-B	0	0	-y	0	-1	+1	-1	0	0	0	-V	+1
6						A		pposi	te	_ ^ 0	ppos	ite							
7	After Encoding	+1	0	0	0	+1	-1	0	0	-1	0	-1	+1	-1	0	0	0	-1	+1
8	Link 1	()	()	\mathbb{C}	()	()		C	C	i I	()		C		()	C	C		\mathbb{C}_{2}
9	Link 2		3	S	S		()	ζ 3	3	()	3	(5		CJ	3	3	0.2	(5	
10										C	Clock	twise	CPL	G	Co	ounter	lock	ise C	PL

编码

- 研究背景 -
- 研究内容 -
- 实验结果 -

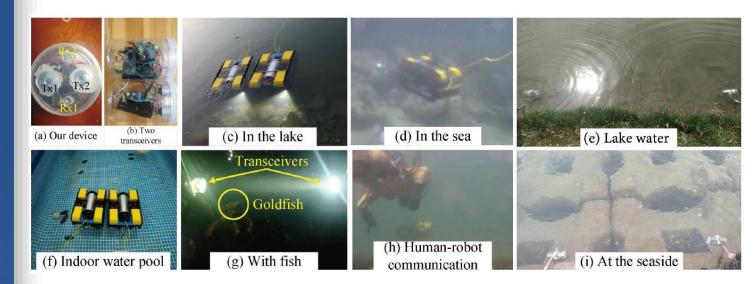
编解码方案

水下双极解码方案 (UBC)

Row Index	Operation		Operation Decoding Data											1	Error				
1	Before decoding	+1	0	0	0	+1	-1	0	0	-1	0	-1	+1	-1	0	0	0	-1	-1
2	Step 1	+1	0	0	0	+1	-1	0	0	-1	0	-1	+1	-1	0	0	0	-1	-1
3		+1	0	0	0	0	-1	0	0	-1	0	-1	+1	-1	0	0	0	-1	-1
4		+1	0	0	0	0	-1	0	0	-1	0	-1	+1	-1	0	0	0	-1	-1
5		+1	0	0	0	0	0	0	0	0	0	-1	+1	-1	0	0	0	-1	-1
6		+1	0	0	0	0	0	0	0	0	0	-1	+1	-1	0	0	0	-1	-1
7		+1	0	0	0	0	0	0	0	0	0	-1	+1	-1	0	0	0	0	-1
8	Step 2	+1	0	0	0	0	0	0	0	0	0	-1	+1	-1	0	0	0	0	-1
9	After decoding	1	0	0	0	0	0	0	0	0	0	1	1	1	0				
	 	i		 	 	i		 	[i I							

解码

- 研究背景 -
- 研究内容 -
- 实验结果 -


PART 03

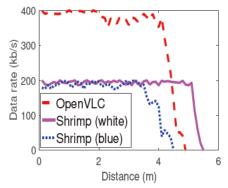
实验结果

- 研究背景 -
- 研究内容 -
- 实验结果 -

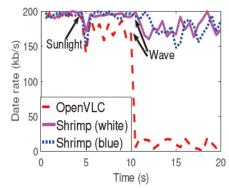
实验场景

实验场景

室内水池、校区学院湖、大连开发区海边

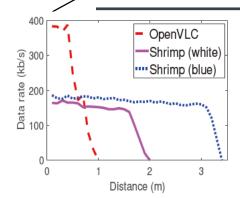

深水实验:设备搭载在水下机器人上

岸边实验:设备绑在铁管上

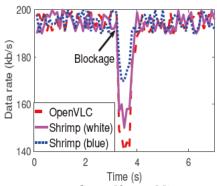


- 研究背景 -
- 研究内容 -
- 实验结果 -

与OpenVLC的实验比较



在空气中的比较

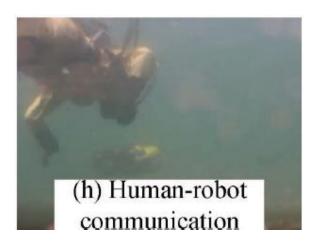


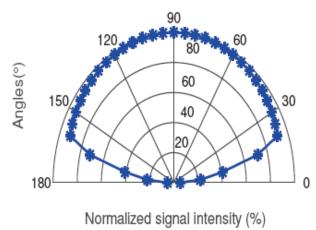
阳光和水波干扰

实验结果

在湖水中的比较

障碍物干扰

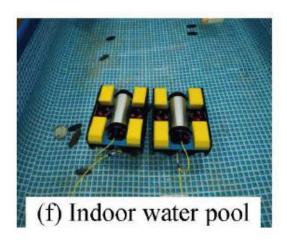

空气中,OpenVLC具有优势。水下环境中,在<mark>相同的实验设置</mark>下,本文方案性能OpenVLC


- 研究背景 -
- 研究内容 -
- 实验结果 -

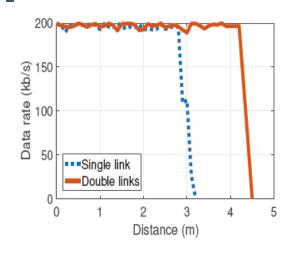
对准性实验设置

实际测试场景

实验结果


- 发射器(即机器人)位置固定,改变接收器的方向,测量接收信号的强度, 结果表明接收器的覆盖角很广
- 结论:本系统无需严格的对准要求

- 研究背景 -
- 研究内容 -
- 实验结果 -

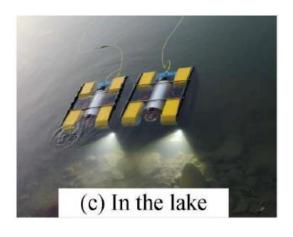

双链路实验设置

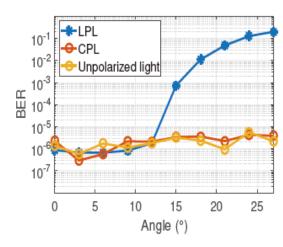
实际测试场景

➢ 双链路15w vs. 单链路 30w

实验结果

> 结论: 双链路实现了更远的传输距离

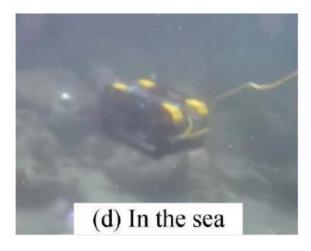

原因:差分放大器消除相邻链接的噪声信号,提高鲁棒性


- 研究背景 -
- 研究内容 -
- 实验结果

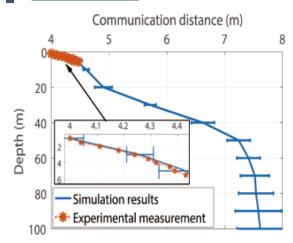
圆偏振光实验设置

实际测试场景

实验结果


- > 实验通过机器人上的陀螺仪记录倾斜角度
- > 实验结果表明LPL设计不适合水下通信,CPL具备对抗设备旋转的有效性
- > 非偏振光不是水下通信的良好选择,因为会受到非偏振的环境光的严重影**响**

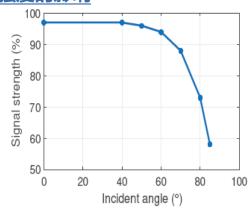
- 研究背景 -
- 研究内容 -
- 实验结果

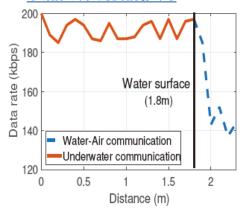

不同水深实验设置

实际测试场景

研究水深对通信距离的影响

实验结果


- **〉 实验结果表明, 随着深度的增加,有更长的通信距离**
- 原因:随着深度的增加,叶绿素的密度逐渐下降,而叶绿素可以吸收光信号,因此,通信距离增加


- 研究背景 -
- 研究内容 -
- 实验结果 -

水-空气界面通信

水-空气界面处的入射角对信号 强度的影响

入射角在0°和40°范围内时,信号 强度高,因此无需将光信号垂直朝 向海面照射 水-水和水-空气通讯:接收器从发射器移开

- 当接收器刚从水中移出时,我们会观察到数据速率下降。
- 原因:水-空气界面处的反射所致

通过实际场景实验,探索了本文方案在水-空气界面通信场景中的可行性。

- 研究背景 -
- 研究内容 -
- 实验结果 -

本文主要贡献

利用双重CPL

使用顺时针和 逆时针的圆偏振光, 双链路的设计,极 大增加系统鲁棒性

提出一种UBC的编码方案

为双重CPL定制的编码 方式,有利于增加水下环境 中的通信距离

原型成本低廉

使用低成本的商用现货LED和硅光二极管,通过设计制造印刷电路板和改造驱动电路提升硬件性能

大量的实验

在不同的水下环境中进行了全面的实验,包括室内游泳池,湖泊和海洋,以验证shrimp的有效性。

感谢大家 欢迎批评指正

12-12 F至60 W 以图史 In 研修信