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Abstract— Orthogonal frequency division multiplexing with
index modulation (OFDM-IM) is a promising scheme for under-
water optical wireless communication (UOWC) due to its high
power efficiency and flexibility. In this letter, we propose and
experimentally demonstrate an intelligent index recognition
scheme for OFDM-IM in UOWC systems. Considering the unique
activation patterns of OFDM-IM with different numbers of
activated subcarriers within each subblock, the signal histograms
in the frequency domain are adopted as the features for recog-
nition. Moreover, various machine learning or deep learning
algorithms are further utilized as the tools to perform intelligent
index recognition based on the distinctive frequency-domain
histograms. Experimental results demonstrate the feasibility of
the proposed intelligent index recognition scheme for OFDM-IM
in UOWC systems. In addition, the impact of the number of
bins and the number of symbols on the performance of index
recognition is also studied.

Index Terms— Orthogonal frequency division multiplexing
with index modulation (OFDM-IM), index recognition, under-
water optical wireless communication (UOWC).

I. INTRODUCTION

NDERWATER optical wireless communication (UOWC)

has been widely considered as a promising technology
to realize the sixth-generation (6G) underwater communication
in recent years, due to its abundant spectrum resources, low
link delay, high communication security, large transmission
capacity and low implementation cost [1], [2]. Neverthe-
less, practical UOWC systems are generally bandlimited due
to the low-pass nature of the optical components such as
light-emitting diodes (LEDs), laser diodes (LDs) and photo-
detectors (PDs) [3]. Moreover, the underwater channel can also
be very complex and dynamic, which requires high flexibility
to implement UOWC in practical applications [4].
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As an enhanced version of classical orthogonal frequency
division multiplexing (OFDM), OFDM with index modulation
(OFDM-IM) has been recently proposed as an efficient
technique to improve the power efficiency and flexibility
of OFDM [5], which has also been applied in UOWC
systems [6], [7]. Improved OFDM-IM such as coordinate
interleaved OFDM-IM has been further designed to enhance
the performance of OFDM-IM [8], [9]. The basic principle
of OFDM-IM is to group subcarriers into subblocks and
selectively activate a subset of subcarriers within each
subblock to transmit both constellation symbols and index
bits. When applying OFDM-IM in complex UOWC systems,
the number of activated subcarriers within each subblock can
be dynamically adjusted to adapt to the various underwater
channels conditions.

To perform OFDM-IM demodulation, the exact number
of activated subcarriers needs to be known at the receiver
side [10]. Considering the practical underwater channel can
be complex and dynamic, the number of activated subcarriers
within each subblock might change with time in OFDM-IM
based UOWC systems. Hence, it is of practical significance to
enable index recognition at the receiver side before carrying
out signal demodulation. Recently, likelihood-based and deep
neural network (DNN)-based index recognition schemes have
been reported [11], [12]. Nevertheless, likelihood-based index
recognition involves high-complexity likelihood ratio calcu-
lations, while DNN-based index recognition requires a large
number of samples for successful training. To the best of our
knowledge, efficient OFDM-IM index recognition in UOWC
systems has not yet been reported in the literature.

In this letter, we propose an intelligent index recognition
scheme for OFDM-IM in UOWC systems by exploiting the
signal histograms in the frequency domain as the recognition
features. Moreover, machine learning and deep learning algo-
rithms including decision trees (DT), support vector machine
(SVM), k-nearest neighbors (k-NN) and convolutional neural
network (CNN) are applied to perform intelligent index recog-
nition based on the histograms. Hardware experiments are
conducted to verify the feasibility of the proposed intelligent
index recognition scheme for OFDM-IM in UOWC systems.

II. PRINCIPLE

In this section, we first introduce the principle of OFDM-IM
in UOWC systems, and then the adopted recognition features
and recognition algorithms for intelligent index recognition are
further discussed, respectively.
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Fig. 1.

TABLE I
MAPPING TABLE FORn =4 AND [ € {1, 2, 3}

Scheme Index bits Subblocks
00 [Si,0,0,0]
n=41=1 01 [0, S;,0,0]
11 [0,0,5;,0]
10 [0,0,0,5;]
00 [Si, S;,0,0]
n=41=2 01 [0, S;,55,0]
11 [0,0,Si,Sj]
10 [S:,0,0,5;]
00 [Si, S5, Sk, 0]
n=41=3 01 [0, 55,55, Sk]
11 [Sk,o,,Si,Sﬂ
10 [S}, Sk, 0, Si]

Figs. 1(a) and (b) depict the diagrams of the OFDM-IM
transmitter and receiver, respectively. At the OFDM-IM trans-
mitter, the input bits are first divided into G groups via a bit
splitter and each group of bits are then sent into a subblock,
where N subcarriers are divided into G subblocks and the
subblock length is n N/G. In each subblock, the group
of bits are split into two parts which are used to perform
index selection and constellation mapping. For each subblock,
[ out of n subcarriers can be selected to transmit constellation
symbols, with [ € {1, 2, --- , n}. More specifically, OFDM-IM
becomes conventional OFDM when [ = n [10], [13]. The
mapping table of OFDM-IM with n =4 and [ € {1, 2,3} is
given in Table I, where S;, S; and S; denote the transmitted
constellation symbols. After that, the OFDM block is created
by combining all the subblocks together. Due to the intensity
modulation nature of general UOWC systems, inverse fast
Fourier transform (IFFT) with Hermitian symmetry (HS) is
executed to obtain a real-valued OFDM signal to modulate the
light intensity of LED/LD transmitters in UOWC systems [7].
Finally, the resultant parallel signal is converted to a serial
signal via parallel-to-serial (P/S) conversion.

At the intelligent OFDM-IM receiver, the received signal is
first converted to a parallel signal through serial-to-parallel
(S/P) conversion. Then, fast Fourier transform (FFT) and
frequency domain equalization (FDE) are further carried out.
As discussed above, the number of subcarriers that can be
activated for signal transmission can be varied from 1 to n,
ie., l € {1,2,---,n}, and hence the correct signal detection
in each subblock requires the accurate information about the
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Schematic diagram of the OFDM-IM system with intelligent index recognition: (a) OFDM-IM transmitter and (b) intelligent OFDM-IM receiver.

[ value. For the intelligent OFDM-IM receiver, the [ value
can be recognized via intelligent index recognition. More
specifically, the histograms of the frequency-domain signal
after FDE are first counted, which are then used as the
feature values for subsequent intelligent index recognition
using machine learning or deep learning algorithms. The
detailed principle about the adopted recognition features and
recognition algorithms will be discussed in the following sub-
sections. After intelligent index recognition, the OFDM block
is split into G subblocks and low-complexity log-likelihood
ratio (LLR) detection can be performed to recover the index
bits and extract the constellation symbols for constellation
demapping. The final output bits can be obtained by combining
the generated bits of each subblock together.

To realize index recognition, frequency-domain histograms
of the received signal are adopted as the recognition features
to perform intelligent index recognition. Since the signal
obtained after FFT and FDE is complex-valued, we utilize the
absolute and normalized values of the complex-valued signal
to generate the histograms. Letting X* denote the received
complex-valued signal vector of the z-th OFDM symbol in the
frequency domain, the resultant signal after taking the absolute
value and normalization can be expressed by
5 | X7 — 1 X% |min

z
! |Xz|max - |Xz|min7

i=1127"'7N1

(D

where | - | represents the operation to take absolute value of
a complex-valued input, and |X?|max and |X*|min denote the
maximum and minimum absolute values of the elements in
the signal vector X<, respectively.

Due to the normalization process in (1), the amplitudes of
the elements in the obtained signal vector X? are all within
the range from O to 1. As a result, by dividing this range
into H amplitude intervals, we can convert the normalized
signal vector X% into a histogram with H bins by counting the
number of elements falling within a certain amplitude interval.
Moreover, we can also utilize multiple OFDM symbols
together to generate the signal histograms so as to mitigate
the adverse effect of the additive noise. Here, the number of
OFDM symbols which are simultaneously utilized to generate
the signal histograms is denoted by K. Fig. 2 illustrates the
transmitted signal histograms without normalization and the
received signal histograms with normalization for OFDM-IM
using binary phase shift keying (BPSK) with K = 1, H = 10,
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Fig. 2. Transmitted signal histograms without normalization for (a) [ = 1,
(b)! =2,(c)! =3 and (d) I = 4, and received signal histograms with
normalization for (e) [ =1, ()l =2,(g) l =3 and (h) [ = 4.

n = 4 and different / values. Due to the distinctive subcarrier
activation patterns for different / values, the transmitted signal
histograms without normalization show quite different shapes
for different / values. For the received normalized signal
histograms with noise, the amplitudes of the elements are
mostly located in the 1st and the 10th intervals for I = 1.
When / is increased to 2 and 3, more amplitudes are located
at the higher bin indexes while the count of the amplitudes
at the bin index of 1 gradually decreases. For the case of
[ = 4, i.e., conventional OFDM, the amplitudes are generally
distributed across all the bin indexes, with the highest counts
observed at the middle bin indexes such as 5 and 6. It can be
clearly seen from Fig. 2 that there is fundamental difference
among the signal histograms for different / values, which can
be efficiently utilized as features to perform intelligent index
recognition for OFDM-IM in UOWC systems.

Based on the recognition features using signal histograms,
the following machine learning or deep learning algorithms are
considered to fulfill the recognition task in OFDM-IM based
UOWC systems.

1) Decision Tree (DT): The DT with the C4.5 algorithm
is utilized by sending the labeled histograms of four index
formats as features for training, which uses the information
gain ratio as a rule to select features and determine the index
of each testing histogram [14].

2) Support Vector Machine (SVM): SVM with radial basis
function is used to identify the H-dimensional space, enabling
the recognition of four index formats using histograms [15].

3) K-Nearest Neighbors (k-NN): When applying k-NN,
each testing histogram finds its nearest neighbors by calculat-
ing the Euclidean distance in H-dimensional space and then
classifying them by a majority vote based on the index formats
of these neighbors [16].

4) Convolutional Neural Network (CNN): A CNN model
is also considered, which consists of two convolutional layers,
two pooling layers, and two fully connected layers with 64 and
4 neurons, respectively [17].
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Experimental setup of the UOWC system with a 2m water tank.
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Fig. 4. Experimental accuracy vs. SNR with different recognition algorithms
for OFDM-IM using (a) BPSK, (b) 4QAM, and (c) 8QAM.

III. RESULTS AND DISCUSSIONS

To investigate the performance of the proposed intelligent
index recognition scheme for OFDM-IM in UOWC systems,
hardware experiments are conducted in the lab environments.
Fig. 3 depicts the experimental setup of the UOWC system uti-
lizing a vertical-cavity surface-emitting laser (VCSEL). At the
transmitter side, the transmitted signal generated offline by
MATLARB is first loaded into an arbitrary waveform generator
(AWG) with a sampling rate of 4 GSa/s, where the IFFT/FFT
size is 256, the number of data subcarriers is 64, the number
of subblocks is 16 and the subblock length is 4. Hence, the
effective bandwidth of the OFDM-IM signal is 1 GHz. Then,
the signal is combined with a 2.3V direct current (DC) bias
via a Bias-Tee to drive the VCSEL and a biconvex lens is
used to focus the light for transmission through a 2m water
tank. At the receiver side, another biconvex lens is used to
focus the light onto the avalanche photodiode (APD). A digital
storage oscilloscope (DSO) with a sampling rate of 12.5 GSa/s
is further used to record the data for offline processing.

In the experiments, the training and testing histograms are
generated following the method introduced in Section IL.B,
where four index formats (i.e., [ € {I,2,3,4}) are set for
recognition and three constellations including BPSK, 4-ary
quadrature amplitude modulation (4QAM) and 8QAM are also
considered for OFDM-IM. For each constellation, a total of
1600 histograms are generated for the four index formats
with 400 histograms for each index format, where 80% of
the histograms are used for training and the rest 20% of the
histograms are used for testing.

Figs. 4(a), (b) and (c) show the recognition accuracy
versus signal-to-noise ratio (SNR) with different recognition
algorithms for OFDM-IM using BPSK, 4QAM and 8QAM,
respectively, where K = 1 and H = 10. As we can see, the
recognition accuracy is generally increased with the increase
of SNR for all the recognition algorithms. Moreover, it can be
seen that DT obtains the lowest accuracy while k-NN achieves
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Fig. 6. Simulation accuracy and BER vs. SNR over an AWGN channel.

the highest accuracy among all the algorithms. In addition,
CNN and SVM have nearly the same accuracy, suggesting that
the use of deep learning algorithms such as CNN in this kind
of recognition task might not achieve satisfactory performance.
Furthermore, the required SNRs for BPSK, 4QAM and 8QAM
using k-NN to reach near 100% accuracy are 8.6, 9.1 and
13 dB, respectively, indicating that a larger SNR is required
for a higher order of constellation.

Fig. 5(a) shows the recognition accuracy versus number of
bins with different recognition algorithms for OFDM-IM using
BPSK, where K = 1 and SNR = 0.7 dB. As we can see, a total
of four bins, i.e., H = 4, can be sufficient for all the algorithms
to achieve stable performance. Fig. 5(b) shows the recognition
accuracy versus number of symbols with different recognition
algorithms for OFDM-IM using BPSK, where H = 10 and
SNR = 0.7 dB. It can be seen that the use of more OFDM
symbols to generate the histograms can lead to significantly
improved recognition accuracy. Taking k-NN for example, the
recognition accuracy is increased from 60.9% to 93.5% when
the number of symbols K is increased from 1 to 10.

Fig. 6 shows the simulation accuracy and BER vs. SNR
over an additive white Gaussian noise (AWGN) channel for
OFDM-IM using BPSK with H = 10 and k-NN. With
the increase of SNR, the BER gradually reduces while the
recognition accuracy gradually increases. Specifically, an SNR
of 11.4 dB is required for / = 1 to reach the 7% forward error
correction (FEC) coding threshold of BER = 3.8 x 1073.
For [ = 2, 3 and 4, larger SNRs are needed to reach
BER = 3.8 x 1073, Moreover, the recognition accuracy already
exceeds 99% with K = 1 for an SNR of 11.4 dB, which can
be further enhanced by increasing K. It can be concluded from
Fig. 6 that accurate index recognition can be guaranteed at the
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minimum required SNR to reach the FEC coding threshold for
communication.

IV. CONCLUSION

In this letter, we have proposed and experimentally
demonstrated an intelligent index recognition scheme for
OFDM-IM in UOWC systems. By adopting frequency-domain
histograms as the recognition features, efficient intelligent
index recognition can be realized through various machine
learning or deep learning algorithms. The obtained experi-
mental results show that k-NN can achieve better recognition
performance than other recognition algorithms, and a larger
SNR is required to perform satisfactory recognition for a
higher constellation order in OFDM-IM. Compared with the
existing likelihood-based and DNN-based index recognition
schemes, the proposed scheme enjoys the advantages of low
computational complexity and reduced training requirement.
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