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Multiple-input multiple-output (MIMO) technology, a core
component of 6G, has been widely adopted in optical wire-
less communication (OWC) systems. Accurate recognition of
different MIMO types is essential for MIMO selection and
demodulation. In this Letter, we propose an open-set MIMO
recognition method for OWC systems using a Siamese neural
network (SNN). Simulation results show that the SNN signif-
icantly outperforms other recognition approaches, includ-
ing convolutional neural networks (CNNs) and traditional
machine learning techniques. For SNN-based recognition,
over 90% accuracy is achieved with training based on
only nine fixed sampling points in both 2× 2 and 4× 4
MIMO-OWC systems. © 2024 Optica Publishing Group. All
rights, including for text and data mining (TDM), Artificial Intelligence
(AI) training, and similar technologies, are reserved.
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In recent years, wireless communication has seen significant
growth in both usage and importance [1]. As the available radio
frequency spectrum is limited, an attractive alternative to radio
frequency is optical wireless communication (OWC), which
offers the advantage of abundant spectrum and high security
[2]. However, despite the numerous advantages of OWC sys-
tems, their modulation bandwidth, when using commercially
available light-emitting diodes (LEDs), is typically limited to a
few MHz [3,4]. One promising solution to overcome this lim-
itation is the implementation of multiple-input multiple-output
(MIMO) technology, which is widely recognized for its ability
to significantly enhance data transmission speed, coverage, and
resilience against multi-path fading [5]. By integrating MIMO
with high spectral efficiency modulation schemes, the data rate
of OWC systems can be increased to several Gbit/s [6]. Addi-
tionally, MIMO-OWC systems offer the benefit of achieving
high data rate transmission without requiring additional trans-
mit power or bandwidth, making them an efficient solution for
overcoming bandwidth constraints [7].

The most popular MIMO schemes in OWC include repetition
coding (RC), spatial multiplexing (SMP), and spatial modula-
tion (SM) [8]. These techniques differ in their strengths and

applications. Due to its diversity gains, RC is highly robust
against varying transmitter–receiver alignments, making it effec-
tive in challenging environments. However, since RC does not
provide spatial multiplexing gains, achieving high spectral effi-
ciency with this method requires large signal constellations.
In contrast, SMP can achieve higher data rates by leveraging
multiplexing gains, but it relies on low channel correlation to
realize these benefits. SM, on the other hand, combines MIMO
and digital modulation techniques, offering better robustness to
high channel correlation compared to SMP, while also enabling
greater spectral efficiency than RC. In practical communication
systems, the choice of a MIMO scheme depends on various
factors, including system requirements, channel conditions, and
performance goals [9,10]. Each MIMO scheme has its distinct
advantages and trade-offs, making them suitable for different
scenarios. SMP is optimal for environments with low channel
correlation where high data rates are needed, while SM and RC
excel in scenarios requiring robustness or greater spectral effi-
ciency. A flexible approach, such as switching between different
MIMO schemes, is crucial for optimizing performance under
varying conditions. As such, MIMO recognition is an essen-
tial first step to enable adaptive switching between techniques,
ensuring that the strengths of each MIMO scheme can be fully
utilized in different environments.

MIMO fingerprints represent the intrinsic characteristics of
the transmission method, primarily influenced by the number
of channels and their correlations. These fingerprints are inher-
ently challenging to replicate, and by extracting these features,
we can accurately identify targets. This capability is crucial
for applications such as MIMO detection and MIMO demodu-
lation [11]. Recent advancements in artificial intelligence and
machine learning, especially deep learning, have provided strong
theoretical foundations for MIMO fingerprint recognition. How-
ever, most supervised learning approaches for MIMO fingerprint
recognition are based on the closed-world assumption, where it
is presumed that all emitter classes in the test data are already
included in the training set. This assumption becomes prob-
lematic in dynamic and open environments. To address this, an
open-set MIMO recognition method is proposed in this study,
enabling effective MIMO recognition across the entire receiving
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Fig. 1. Geometric setup of a general MIMO-OWC system.

plane by training with only a few fixed positions. This approach
allows for fast and efficient MIMO recognition in practical OWC
scenarios where data from the whole receiving plane is either
unavailable or difficult to collect.

Siamese neural network (SNN) is particularly well-suited for
this task due to its ability to learn and capture similarities and dis-
similarities within input data [12]. This feature is beneficial for
classifying MIMO fingerprints at different locations. Although
the SNN has been applied to open-set recognition problems
in communication, their application in OWC has not yet been
explored. In this Letter, we propose an open-set MIMO recog-
nition approach for OWC using the SNN. By sampling from
a few location points on the receiving plane, MIMO schemes
adopted can be well predicted for the entire receiving plane.
Simulations are performed to evaluate and compare the perfor-
mance of different deep learning classifiers such as the SNN and
convolutional neural network (CNN) with traditional classifiers
including random forest (RF), decision tree (DT), and support
vector machine (SVM).

Figure 1 illustrates the geometric setup of a general MIMO-
OWC system within a typical indoor environment, where a LED
array with Nt LEDs is mounted in the ceiling and a photo-
detector (PD) array with Nr PDs is located at the receiving plane.
Considering that various MIMO transmission schemes such as
RC, SMP, and SM might have very distinctive performance at
different positions over the receiving plane, it is efficient to apply
adaptive MIMO transmission for a given receiving position so
as to achieve the optimal transmission performance by select-
ing the most suitable MIMO transmission scheme [13]. The
schematic diagram of the adaptive MIMO-OWC system with
intelligent open-set MIMO recognition is depicted in Fig. 2,
where insets (a), (b), and (c) show the 4 × 4 MIMO-OWC trans-
mitter using RC, SMP, and SM, respectively. Letting x denote
the transmitted signal vector after adaptive MIMO mapping at
the transmitter side, the received signal vector at the receiver
side can be expressed by the following:

y = Hx + n, (1)

where H is the Nr × Nt MIMO channel matrix and n is the
additive noise vector.

In a typical indoor environment, assuming each LED follows
a Lambertian radiation pattern. There are two main link models,
i.e., line-of-sight (LOS) link and non-line-of-sight (NLOS) link.
In this Letter, we only consider the LOS link as it occupies
more than 95% of the total received power. Moreover, the PD is
assumed to point vertically upward. Therefore, the channel gain

Fig. 2. Schematic diagram of the adaptive MIMO-OWC system
with intelligent open-set MIMO recognition. Insets: 4 × 4 MIMO-
OWC transmitter using (a) RC, (b) SMP, and (c) SM.

between the r-th PD and the t-th LED with r = 1, 2, . . . , Nr and
t = 1, 2, . . . , Nt can be calculated by the following:

hrt =
(m + 1)ρA

2πd2
rt

cosm(φrt)Ts(θrt)θrt) cos(θrt), (2)

where m = − ln 2/ln(cos(Ψ)) is the Lambertian emission order
and Ψ is the semi-angle at half power of LED; ρ and A are
the responsivity and the active area of PD, respectively; drt is
the distance between the r-th PD and the t-th LED; φrt is the
emission angle; θrt is the incident angle; and Ts(θrt) and g(θrt)

are the gains of optical filter and lens, respectively. Moreover,
the additive noise can be modeled as a real-valued zero-mean
additive white Gaussian noise with power Pn = N0B, where N0

is the noise power spectral density (PSD) and B is the signal
bandwidth. At the receiver side, zero-forcing (ZF)-based MIMO
de-multiplexing is generally adopted to obtain the estimate of
the transmitted signal vector x, which is given by the following:

x̂ = H†y = x +H†n, (3)

where H† = (H∗H)
−1 H∗ is the pseudo inverse of H. After ZF

equalization, intelligent open-set MIMO is first executed to rec-
ognize the adopted MIMO scheme and then adaptive MIMO
demapping is performed to obtain the output bits.

To enable adaptive switching between different MIMO
schemes, accurate MIMO recognition is essential. To train a
MIMO recognition model, different samples need to be col-
lected. In real-world OWC tasks, the collection of training
samples often faces limitations due to various practical fac-
tors. This makes it challenging to cover all possible classes
when training a recognizer or classifier. A more realistic sce-
nario involves open-set recognition, where the training phase
has incomplete knowledge of the world, and during testing, the
algorithm may encounter new, unseen classes. This requires the
system not only to accurately classify known classes but also to
effectively handle unknown ones. Therefore, in this study, the
open-set MIMO recognition using SNN is proposed.

As a metric learning-based few-shot method, the SNN utilizes
the same embedding network to extract image-level features and
map the images into vectors. It then employs a learnable metric to
compute the absolute difference between the two vectors, repre-
senting the similarity between the two images. During training,
the SNN takes in a pair of samples instead of individual sam-
ples. Each sample pair is assigned a label 1 if the images belong
to the same class and 0 if they belong to different classes. The
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Fig. 3. SNN for a 2 × 2 MIMO-OWC system: (a) SNN model
structure and b) SNN model structure under the episodic training
strategy.

model is trained using the cross-entropy loss function. In the
testing phase, sample pairs are input, and the class of a query
sample is determined by identifying which reference sample has
the highest similarity, thus completing the classification.

Figure 3(a) demonstrates the SNN model structure for a 2 × 2
MIMO-OWC system. The SNN essentially uses the same fea-
ture embedding network for a pair of inputs (x1, x2). Here, x1

and x2 represent the received signals for Nslot time slots, each
with a dimension of NPD × Nslot. For a 2 × 2 MIMO-OWC sys-
tem, NPD = 2. First, both inputs pass through the same CNN to
output feature maps. After applying the flatten operation, the
multi-dimensional feature maps are flattened into single vectors
[g(x1), g(x2)]. A learnable metric is then used to compute the
similarity between the samples. This metric involves calculat-
ing the induced distance between g(x1) and g(x2) using fully
connected layers, followed by a sigmoid activation function for
prediction. The formula for calculating the similarity between
two inputs in a SNN is given by the following:

D (x1, x2) = σ

(︄∑︂
j

αj

|︁|︁gj(x1) − gj(x2)
|︁|︁)︄ , (4)

where σ represents the activation function, specifically the sig-
moid activation function in this case, and αj refers to parameters
learned by the model during training, used to weigh the impor-
tance of the component distances. The last fully connected layer
introduces a metric into the learned feature space from the pre-
vious layer. After passing through the activation function, it
produces the similarity score for the global feature vectors of
(x1, x2).

Currently, most metric-based few-shot learning methods uti-
lize an episodic training strategy to train and pre-test the model.
In this study, the SNN adopts this strategy to tackle few-shot
learning tasks. Figure 3(b) illustrates the model structure of
the SNN under a three-way one-shot task using the episodic
training strategy. In the figure, the support set consists of three
classes, each containing one sample. After passing through the
embedding space, the feature mappings for both the support set
and query set samples are obtained. The multi-dimensional fea-
ture mappings are flattened into one-dimensional vectors via the
flatten operation. Then, a learnable metric module is applied

Table 1. Parameters for the System

Parameter Value

Room dimension 4 m × 4 m × 3 m
LED positions for 2 × 2 MIMO (1 m, 2 m, 3 m), (3 m, 2 m, 3 m)

LED positions for 4 × 4 MIMO (1 m, 1 m, 3 m), (3 m, 1 m, 3 m)
(1 m, 3 m, 3 m), (3 m, 3 m, 3 m)

Height of receiving plane 1 m
Semi-angle at half power of LED 65◦

Gain of optical filter 0.9
Refractive index of optical lens 1.5
FOV of optical lens 70◦

Responsivity of PD 0.53 A/W
Active area of PD 1 cm2

Modulation bandwidth 20 MHz
Noise power spectral density 10−22 A2/Hz

to calculate the similarity between the query sample and each
class in the support set. A non-parametric nearest neighbor clas-
sifier is used to complete the classification. The model is trained
end-to-end using the cross-entropy loss function. Throughout
the entire training and prediction process, the SNN aims to
learn a task-appropriate feature representation and perform sim-
ilarity measurement in the feature space to facilitate effective
classification.

In order to validate the performance of the proposed open-set
MIMO recognition method with SNN, simulations are carried
out by considering MIMO-OWC systems in practical indoor
environments. In our simulations, MATLAB is used as the sim-
ulator, and we consider an indoor environment with a dimension
of 4 m × 4 m × 3 m. The geometric setup of the MIMO-OWC
system is depicted in Fig. 1. The LEDs are mounted on the ceil-
ing, and the user is situated on the receiving plane. The LEDs
are oriented vertically downward, while the PDs are oriented
directly upward toward the ceiling. Moreover, we consider four
numbers of training positions, i.e., 4, 9, 16, and 25, to evaluate
the performance of the SNN-based intelligent open-set MIMO
recognition method across the overall receiving plane in the
indoor MIMO-OWC system, where these training positions are
assumed to have a square layout, which are uniformly distrib-
uted over the receiving plane. For example, with four sampling
points, we generate 2000 received signal matrices for each point,
each having dimensions of NPD × Nslot, to train the SNN model.
For the remaining 1600 testing points on the receiving plane,
the corresponding received signal matrices are used to evaluate
the accuracy. The key simulation parameters are provided in
Table 1.

Figure 4 evaluates the MIMO recognition accuracy versus the
transmitted signal-to-noise ratio (SNR) using various recogni-
tion methods for different numbers of training positions and
MIMO setups. Specifically, Figs. 4(a)–4(d) demonstrate the
recognition accuracy for a 2 × 2 MIMO system using 4, 9, 16,
and 25 training positions, respectively, while Figs. 4(e)–4(h)
illustrate the recognition accuracy for a 4 × 4 MIMO system
using 4, 9, 16, and 25 training positions, respectively. The overall
trend across the eight cases demonstrates that the SNN consis-
tently outperforms the CNN and traditional machine learning
techniques. In general, the SNN provides the best recognition
performance, followed by the CNN, while traditional machine
learning lags behind. Additionally, the recognition performance
of the 2 × 2 MIMO system is better than that of the 4 × 4 MIMO
system at lower SNR levels. Deep learning models, such as the
SNN and CNN, achieve a 100% recognition accuracy in all
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Fig. 4. Recognition accuracy versus transmitted SNR using various recognition methods for different numbers of training positions and
MIMO setups: (a) 2 × 2 MIMO, 4 positions; (b) 2 × 2 MIMO, 9 positions; (c) 2 × 2 MIMO, 16 positions; (d) 2 × 2 MIMO, 25 positions; (e)
4 × 4 MIMO, 4 positions; (f) 4 × 4 MIMO, 9 positions; (g) 4 × 4 MIMO, 16 positions; and (h) 4 × 4 MIMO, 25 positions.

Fig. 5. Recognition accuracy versus number of training positions
for various SNR values and MIMO setups when the SNN is adopted.

scenarios when the transmitted SNR reaches 160 dB and 180
dB for 2 × 2 and 4 × 4 MIMO setups, respectively.

Figure 5 illustrates the MIMO recognition accuracy versus
the number of training positions for various SNR values and
MIMO setups when the SNN is adopted. This comparison high-
lights how varying the number of training positions impacts the
recognition accuracy. As observed, the accuracy improves with
an increasing number of training positions, though the rate of
improvement gradually slows. Notably, once the number of train-
ing positions reaches 9, the recognition accuracy exceeds 90%
across all scenarios, and the recognition accuracy remains stable
when more than 16 training positions are selected. It demon-
strates that a relatively small number of training positions is suf-
ficient for accurately recognizing various MIMO schemes at the
receiver side, thus enabling open-set MIMO recognition across
the overall receiving plane in the indoor MIMO-OWC system.

In this Letter, we have proposed and investigated an intelligent
open-set MIMO recognition method for MIMO-OWC systems.
Specifically, the SNN is utilized to successfully realize MIMO

recognition across the overall receiving plane by selecting only a
few fixed positions for training. Simulation results demonstrate
that the SNN provides the best recognition performance among
various recognition methods such as the DT, RF, SVM, and
CNN. It is shown that the recognition accuracy improves as the
number of training positions increases for both 2 × 2 and 4 × 4
MIMO-OWC systems using the SNN for MIMO recognition,
and a total of 16 training positions can result in satisfactory
recognition performance across the overall receiving plane.
Therefore, the proposed SNN-based intelligent open-set MIMO
recognition method can be promising for enabling intelligent
MIMO-OWC systems in practical indoor applications.
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