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Learning-Based Energy-Efficient Resource
Management by Heterogeneous RF/VLC
for Ultra-Reliable Low-Latency
Industrial loT Networks

Helin Yang

and Xianzhong Xie

Abstract— Smart factory under Industry 4.0 and indus-
trial Internet of Things (loT) has attracted much attention
from both academia and industry. In wireless industrial
networks, industrial lIoT and loT devices have different
quality-of-service (QoS) requirements, ranging from ultra-
reliable low-latency communications (URLLC) to high trans-
mission data rates. These industrial networks will be highly
complex and heterogeneous, as well as the spectrum and
energy resources are severely limited. Hence, this arti-
cle presents a heterogeneous radio frequency (RF)/visible
light communication (VLC) industrial network architecture
to guarantee the different QoS requirements, where RF
is capable of offering wide-area coverage and VLC has
the ability to provide high transmission data rate. A joint
uplink and downlink energy-efficient resource management
decision-making problem (network selection, subchannel
assignment, and power management) is formulated as a
Markov decision process. In addition, a new deep post-
decision state (PDS)-based experience replay and transfer
(PDS-ERT) reinforcement learning algorithm is proposed
to learn the optimal policy. Simulation results corroborate
the superiority in performance of the presented hetero-
geneous network, and verify that the proposed PDS-ERT
learning algorithm outperforms other existing algorithms
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in terms of meeting the energy efficiency and the QoS
requirements.

Index Terms—Deep reinforcement learning, energy
efficiency, heterogeneous radio frequency (RF)/visible
light communication (VLC) industrial networks, industrial
internet of things, resource management, ultrareliable
low-latency communications (URLLC).

[. INTRODUCTION

ITH the rapid development of industrial automation,
W the fourth industrial revolution (Industry 4.0) takes the
Internet of Things (IoT) into industrial systems, where smart de-
vices (sensor, actuators, machines, and robots) intelligently send
data to realize the real-time industrial control with the minimal
human interaction [1], [2]. The future factories and industries
expect to replace conventional wired communication networks
by wireless networks, in order to improve the flexibility in
moving machinery and reducing the infrastructure expenditure
[3]-[5]. Massive machine-type communication (mMTC) can
effectively support the massive communication connectivity of
a large number of IoT devices in industrial networks, by trans-
mitting short packets with low data rates in a short period of time
[6]. In practical industrial wireless networks (IWNs), industrial
IoT (IIoT) devices generally have the following requirements or
challenges: strict latency and reliability requirements [7], high
transmission data rate demands, limited energy batteries, and
the scarce wireless radio frequency (RF) spectrum resource,
all these issues impose challenging requirements to efficient
network structures and wireless communication technologies
[11-[4], [8], [9].

Recently, considering the fact that ultra-reliable and low
latency communications (URLLC) in fifth generation (5G) is
closely related to industrial networks, some advanced resource
managements approaches have been proposed to ensure the
latency and reliability requirements of IIoT communications
[5], [8]-[15]. For instance, industrial automation may require
end-to-end latencies in the range of 1-5 ms with the trans-
mission reliability of 99.999% or higher [8], [10], [11]. Ye
et al. [5] proposed a novel two-phase transmission protocol
to guarantee the stringent low delay and high reliability in
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device-to-device-enabled industrial networks. Considering the
large number of IIoT devices in industrial networks, the current
research developments, such as clustered IWNs [12], adaptive
routing protocols [13], software defined network, and edge
computing [14], have been proposed to provide reliable and
low latency wireless links for IIoT communications. Besides
reliable and low latency requirements, energy efficiency plays
an important role in IWNs, since most of IIoT devices (sensors,
actuators, and controllers) are power-constrained in green IWNs
[15]. The energy-efficient resource allocation and transmission
protocol design were presented for the IIoT communication
systems in 5G-enabled IWNSs, in order to maximize the network
energy efficiency (EE) while satisfying quality of service (QoS)
requirements of devices [9], [16]. In [17], a dynamic routing
approach was proposed to improve the energy consumption
and communication latency performance in large-scale IloT
systems. The authors in [18] investigated the problem of how to
optimize the tradeoff between the QoS satisfactions and the EE
in [ToT systems.

The practical IWNs may exist in both IoT and IIoT devices,
where [0T (consumer usage) mainly focuses on throughput and
packet loss rate while IIoT (industrial purpose) emphasizes the
latency and reliability, leading to the different QoS requirements
[1], [14]. In this case, the different QoS requirements range from
low latency and high reliability to high data rates, resulting
in heterogeneous industrial networks [14]. Hence, hierarchical
structures or designs are widely adopted in industrial networks
[81, [14], [16], [19]-[21]. The hierarchical transmission archi-
tectures were presented to efficiently complete a large amount of
application services based on the priority levels in smart indus-
tries [19], [20]. In order to reduce the network complexity, Kalor
et al. [8] studied how to simplify the manageability of hetero-
geneous networks by slicing deterministic and packet-switched
protocols, and a hierarchical transmission-estimation approach
based on 5G enabled codesign was proposed to improve the
transmission reliability [16]. Moreover, an ant colony algorithm
was employed in industrial heterogeneous networks to improve
the network reliability [21].

To achieve the intelligent decision making, the reinforce-
ment learning (RL) tool is applied to learn the optimal policy
of resource allocation, energy management, and transmission
scheduling for IIoT or IoT [11], [22]-[28]. A Q-learning-based
practical duty cycle control was developed to improve the net-
work delay and transmission reliability [22]. He et al. proposed
a distributed deep RL (DRL) combined with the Ethereum
blockchain to create a reliable and safe IIoT communication en-
vironment [23], and the authors in [11] and [24] applied DRL to
search the optimal solution to minimize the IoT communication
delay. Analysis of QoS satisfactions in IoT frameworks using RL
was treated in [25]-[27], which also investigated different RL al-
gorithms for resource allocation, access control, and energy sav-
ing. Moreover, an efficient transfer RL approach was proposed
to guarantee the URLLC requirements of Internet of Vehicles
(IoVs) [28]. However, almost all of the above papers [11], [22]-
[28] did not investigate how to satisfy the different QoS require-
ments of devices in dynamic and complex industrial networks.

The above reported works have ability to improve the
industrial communication performance, but conventional RF

networks may fail to support a large number of communication
services (including high data rate) due to the saturation of
RF spectrum in industrial networks, and hard to meet the
energy-efficient communication due to a large number IIoT or
IoT devices [1], [2], [8], [15]. Heterogeneous RF/visible light
communication (VLC) network architecture was considered as
a promising technique for indoor communication environments
with the high energy-efficient utilization and reliable
characteristics [29]-[31], where RF is capable of offering
long-distance transmission with the wide-area coverage and
VLC has the ability to provide high transmission data rate by
generating multiple small optical cells. Moreover, the literatures
[32] and [33] applied the heterogeneous RF/VLC structure
in IoT communication networks to efficiently schedule
transmission under high data rate requirements. However,
conventional heterogeneous RF/VLC networks reported by the
works [29]-[33] did not investigate the URLLC requirements
in IWNs.

Motivated by the above observations, in this article, we
present an energy-efficient resource management based on the
heterogeneous RF/VLC architecture for industrial networks to
guarantee the diverse requirements (high reliability, low latency,
and high data rate) of IIoT and IoT devices. In order to enable
IWNs with high intelligence, a new deep post-decision state
(PDS)-based experience replay and transfer (PDS-ERT) RL al-
gorithm is proposed to realize intelligent resource management,
with the purpose of maximizing the network EE while ensuring
the minimum data rate constraints and the strict URLLC require-
ments. The major contributions of this work are summarized as
follows.

1) A new heterogeneous RF/VLC industrial network ar-
chitecture is developed to support uplink and downlink
communication services, which considers the EE, high
reliability, low latency, and high transmission data rates
requirements in practical industrial networks.

2) We formulate a joint uplink and downlink resource
management (network selection, subchannel assignment,
and power management) problem with considering QoS
requirements, and the energy-efficient resource manage-
ment problem is modeled as an RL framework, thus
the network is capable of intelligently making decisions
based on the instantaneous observations.

3) In order to satisfy different QoS requirements in dynamic
industrial networks, a deep PDS-ERT learning algorithm
is proposed to learn the optimal policy for the intelligent
resource management under the continuous-valued state
and action variables, which effectively improves the
learning speed, efficiency, and stability.

4) The effectiveness of presented heterogeneous industrial
architecture and the proposed deep PDS-ERT learning
algorithm-based intelligent resource management have
been evaluated by the comprehensive simulations.

The rest of this article is organized as follows. The heteroge-
neous RF/VLC network architecture is presented in Section II.
Section III formulates the energy-efficient resource management
problem. The proposed deep PDS-ERT learning algorithm is
provided in Section IV. Simulation results are presented in
Section V and Section VI concludes this article.
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Fig. 1.

Indoor heterogeneous RF/VLC industrial network.

[I. SYSTEM MODEL

A. Heterogeneous RF/VLC Industrial Network
Architecture

Smart factories under Industry 4.0 will consist of a large
number of IIoT devices (sensors, machines, actuators, robots,
etc.) and IoT devices (computers, smartphones, tablets, etc.),
resulting in different QoS requirements of communication ser-
vices, such as ranging from high reliability and low latency to
high data rates. Conventional RF networks may fail to support
the large number of services due to the limited RF spectrum
and energy resources. To address these issues, we present a new
heterogeneous RF/VLC network structure to support different
QoS requirements in industrial networks.

First of all, we divide the IToT and IoT devices into two groups
based on their different QoS requirements.

Group 1: The URLLC services of the devices (generally IIoT
devices) have specific requirements on low latency and high
reliability but have much looser constraints on the high date rate.
For example, each sensor reports a small amount of collected
data to the central controller (uplink) or the central controller
sends the low bit rate information to each actuator(downlink)
within the strict latency requirements.

Group 2: The normal services of the devices (commonly are
IoT devices) have the high data rate requirements but are less
interested in the latency and reliability requirements, such as the
high quality image, video, and webpage.

We set that the devices in the Group 1 are with a higher priority
to access the channel resource to guarantee the high reliability
and low latency requirements, while the devices in the Group 2
are with a lower priority to access channel resource.

After that, a heterogeneous RF/VLC industrial network ar-
chitecture is presented to support the abovementioned different
services, as shown in Fig. 1, where a number of VLC access
points (APs) (refer to femtocells) are uniformed attached on the
room ceiling and one RF AP (refers to microcell) is placed in the
center. Each VLC AP contains one light-emitting diode (LED)
lamp-based luminaries devices offering both lighting require-
ments and communications services, and every VLC AP covers
a confined area to generate a small optical cell. By contrast,
the RF AP provides the coverage for the entire room. Both the

VLC and RF APs connect the Internet to perform the com-
munication services, where VLC APs broadcast information to
devices through visible light signals and the RF AP provides
communication services by the RF signals. Considering the
unpractical components and challenges of the wireless VLC
uplink [29]-[33], VLC only offers the downlink data streams
while RF provides both the uplink and downlink data streams.
‘We would like to mention that due to human activities and device
mobility, the VLC line-of-sight (LOS) communication link may
be intermittently interrupted or blocked of a number for time
slots, called blocked LOS VLC links, and the blocked VLC links
may not support general communication services [29]-[33].
Under this heterogeneous network, RF is capable of offering
wide-area coverage and VLC has the ability to provide high
transmission data rate due to the abundant bandwidth resources
across multiple optimal cells. Motivated by the above analysis,
the RF AP mainly provides the URLLC services of the devices
in Group 1 due to its wide-area coverage, while VLC APs mainly
support the normal services of the devices in Group 2 due to its
offering high transmission data rate.

In addition, the IoT device’s priority depends on its QoS
requirements or application services, when the IoT device
changes its application services, it will report this information
to the central controller in the industrial network by the RF
uplink, and hence the IoT device will be assigned to the channel
resource based on its current priority. For example, one device in
Group 2 with the normal service currently applies the URLLC
services with the low latency and high reliability, it will report
this information to the central controller and then it will be
classified into Group 1 with the higher priority to access the
channel resource to guarantee the high reliability and low latency
requirements.

In the industrial network, a set of IIoT and IoT devices are
randomly distributed on the floor, where the device (mainly IIoT
device) requiring the URLLC service is equipped with one RF
enabled transceiver, and the device (mainly IoT device) needing
the uplink/downlink data rate is equipped with one VLC receiver
[called photodetector (PD)], and one RF enabled transceiver.
The network selection (RF or VLC) decision-making problem
can be formulated as a Markov decision process (MDP) with
the goal of maximizing the reward function, and solved with the
proposed DRL algorithm, which will be provided in Section III
and Section IV.

The number of VLC APs, devices, subchannels per VLC
AP, and subchannels per RF AP are denoted by C, K, NV€,
and NRF | respectively. The set of VLC APs and devices are
denoted as C = {1,...,C} and K = {1,..., K}, respectively.
Let VVEC = {1,... NVECY and NRF = {1,... NRF} rep-
resent the subchannel sets of per VLC AP and RF AP, re-
spectively, where the subchannels for VLC are reused across
all optical cells. The network employs orthogonal frequency
division multiple access (OFDMA) to serve devices.

B. VLC Channel Model

In VLC networks, the VLC LOS links can support the
successful communication services while the blocked LOS VLC
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links cannot provide the high transmission data rate services
[29]-[33]. For the VLC link, the LOS channel gain from one
AP to one device is expressed as [28]

9 A,
hVLC = 2(7.[.(—;_\/114)(3)2COS§ (¢)T9 (7/))9(7/1)005w ey

where A, is the active area of the PD. dV"C and v denote the
distance and the angle of incidence between the LED and the
device, respectively. ¢ is the angle of irradiance from the LED
to the device. ¥ is the order of the Lambertian emission with
¥ = —In2/(Incos ¢, /,) with ¢/, being the LED’s semiangle
at half power. T (¢) and g(1)) are the gain of the optical filter
and the optical concentrator gain at the PD, respectively. (1)
can be expressed as: g(1)) = 1/sin’th. when 0 < 1) < 1), and
g(®) = 01if 1. < 1), where 1), and n are the semiangle field of
view (FOV) of the PD and the refractive index, respectively.
As shown in Fig. 1, due to the multiple VLC APs deploy-
ment, the devices locate in the overlapped areas may suffer
inter-cell interference (ICI) from adjacent cells. If the kth
device (k € K) is assigned to VLC AP ¢ € C on the nth
subchannel (n € N'VEC), the received signal-to-interference-
plus-noise-ratio (SINR) of the device is expressed as [29]-[31]

2
12 PYEC (L)

2 VLC (7, VLC )2 VLC pVLC
K ZC’ECP (hk,n,c’) +N0 Bsub

n,c'

VLC _

Yeon (2)

where /1 is the PD’s responsivity, PYL¢ indicates the allocated
transmit electrical power on the nth subchannel of the cth
VLC AP, /L€ is the VLC channel gain from the cth VLC

k,n,c

AP to device k on the nth subchannel, Ny““ represents the

power spectral density (PSD) of noise at the PD, BYLC is

the subchannel bandwidth BYL¢ = BVLC /NVLC with BVLC
being the VLC transmission bandwidth.

Hence, the data rate of kth device associated by VLC AP ¢

can be expressed as

VLG VLC BYy VLC
Rk - Z Phnc ‘2' 10g2(1 + f}/k?,’ll,(i) (3)
neNVLC

where p)LC is a binary variable, p)LC € {0,1}, p/LC =1

represents that the kth device assigns the nth subchannel of
VLC AP ¢ ; otherwise, p)' <, = 0. The scaling factor 1/2 is due
to the Hermitian symmetry [29]-[31].

C. RF Channel Model

Each indoor industrial factory room deploys one RF AP to
be acted as one cell. The device may receive the ICI from
adjacent industrial factory rooms with the same technology and
the interference from competing technologies operating over
the same band [34], when the device locates in the overlapped
areas. In the RF network, the channel gain is typically given
by [35]

g,f.{ﬁ — 10~PL:ldB]/10 4)

where PLj[dB] is the RF path loss of the kth device in dB,
which is expressed as [35]

PLi[dB] = Alog,(di") + B + Elogo(f./5) + X (5)

where dE'F is the distance from the RF AP to the kth device
and f. denotes the carrier frequency in GHz. A, B, and FE are
constants depending on the propagation model. For the LOS
propagation, A = 18.7, B = 46.8, and £ = 20. For NLOS
scenario, we have A = 36.8, B = 438, and I = 20. X
indicates the wall penetration loss in the NLOS scenario, we set
X = 5(Nyan — 1) for thin walls or obstacles, where Ny, is
the number of obstacles between the RF AP and the device.
Let M denote the number of the adjacent industrial factory
rooms (or adjacent cells) and let m denote the mth adjacent
industrial factory room. For downlink, if the kth device is
assigned to the RF AP on the nth subchannel (n € N®), the
received SINR of the device is given by
PRE.D

RF.D __

g
n
Ven RF,D (6)

ToN\M RF.D RF RF pRF
Zm:l P’”sm gk',n,m + NO B + Ik'm,

sub

where PRF-D and PRED are the allocated transmit power on
the nth subchannel of the corresponding RF AP and the mth
adjacent RF AP, respectively. git —is the RF interference
channel gain from the RF AP in the mth adjacent RF cell
to the kth device. N}*¥ represents the PSD of noise at the

receiver, BRY is the subchannel bandwidth B} = BRF / NRF

with BRY being the RF AP bandwidth. I,ii"D is the interference
from competing technologies operating over the same band. In
this article, we assume that there exists one RF transmitter in
an adjacent factory room under another competing technology
operating over the same band [34].

For uplink, the received signal-to-noise ratio (SNR) at the RF
AP from the kth device on the nth subchannel is

RF,U RF
,yRFA,U _ Pkﬂl, Ik.n A
kn T =M RF,U RF RF RRF RF,U
Zm:l Pk’,n,mgk/,an + NO Bsub + Ik,n

where P,?S’U and P,BE’EH are the transmit power of the kth
device on subchannel n in its associated cell and the the k’th
device on subchannel » in the mth adjacent RF cell, respectively.

g, is the RF interference channel gain from the k’th device

in the mth adjacent RF cell to the current RF AP. I ,? EU is the
interference from competing technologies operating over the
same band [34]. Hence, the achievable data rates of downlink

and uplink are defined as

RF,D RE,D A
P = Y B ") ®

neNRFE
RF.U _ RF,U pRF RF,U
R = Z Py Bauploga(T+v0,,7) )
neNRF
respectively, where pl,j_i’D and pl,j‘i‘U are the channel assignment

indicators, and they are binary values of “1” or “0.”
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I1l. INDUSTRIAL NETWORK REQUIREMENTS AND
PROBLEM FORMULATION

In this section, we formulate the energy-efficient resource
management problem (joint network selection, subchannel
assignment, and power management) in the heterogeneous
RF/VLC industrial network with the objective of maximizing
the network EE while guaranteeing the QoS requirements of
IIoT or IoT devices. We take these practical requirements into
account as constraints in the mathematical way, and the decision
making problem is modeled as a MDP [21]-[27].

A. Requirements of lloT and loT Devices

1) URLLC Requirements: The real-time industrial control
applications (URLLC services) have strict latency and trans-
mission reliability requirements, but they are not interested in
the high data rate. This subsection investigates how to model
the URLLC requirements in a mathematical way.

For URLLC services, we assume that the kth IIoT device or
transmitter follows the independent and identically distributed
Poisson distribution with the packet arrival rate A and the data
packet size LP*°k' in bytes [27]. Generally, the total latency
(T7) of one packet consists of the waiting time of the packet
to be served in the queue (7, ), the transmission time (73), the
channel access delay (7}), the backhaul delay (73,), the packet
reception delay (7}), and the processing delay (7},), which can
be expressed as [36]

Ti=Te+T +To+To+ T +T,. (10)

In (10), the transmission time of one packet is calculated by
T, = Lkt /R4, where RY is the achievable link data rate.
Due to the latency requirement, each packet in URLLC
should be successfully transmitted in a limited time duration. Let
Thax denote the maximum tolerable latency threshold of each
transmission packet, the latency constraint can be guaranteed by
controlling the probability of 7] exceeding the threshold value
Thax » Which can be expressed as
P =Pr{T} = Thax} < P

max

Y

where pk2t denotes the maximum violation probability.

In this article, the outage probability is used to characterize
the reliability requirement and it can be defined as the prob-
ability that the received SINR (v, ) at the receiver is lower
than the target threshold VW Then, the requirement on the
reliability is satisfied by controlling the outage probability,

Pr {7y, <7 }. And the outage probability cannot beyond
Rel

max?

the violation probability p which can be given by

PR = Pr{y;, < Ap ) < pRel (12)

2) Minimum Data Rate Requirements: As illustrated above,
for the normal services, some IIoT devices and IoT devices
may require the high data rates, though the latency is of less
significance. Hence, the minimum data rate requirements of
these devices should be considered in resource management. Let
R}, denote the kth device’ current data rate, the minimum data
rate requirement can be satisfied by controlling the probability of

the unsatisfied normal service (p}jor), where R, fails to achieve
its minimum data rate threshold I2;''", which can be given by

pgor PI‘{Rk < len} <p\0r

max

(13)

where pY 9% denotes the maximum violation probability.

B. Problem Formulation

The total achievable data rate and the total power consumption
can be calculated as

R=3 > o RICHY AR+ AR

kek ceC kek kek
(14)

D 3) DID ST LIA

kek ceC neNVLC

RE,D
> (PP PREP 4]

neNRF

P =CPLC +

5> ( ) )
kek
(15)

respectively, where oy, ; and 3;; denote the association between
a device and a VLC AP or a RF AP, respectively, both having
binary values of “1” or “0” to indicate that there exists a selection
or no selection exists. In addition, Pé‘XF and Pf}/;(LC denote the
fixed power consumption of the RF AP and each VLC AP,
respectively, resulting from the AP hardware power consump-
tion (circuit operation, data processing, backhaul connection,
etc.). Note that PYLC also includes the optical power using
for illumination. P, is the circuit power consumption of one
device.

Our goal is to maximize the network EE (the radio of the
overall data rate and the total power consumption: gy = R/P)
while ensuring the mentioned QoS requirements of devices in
Section III-A. In this article, we present a utility function (also
called reward function) in the heterogeneous industrial network,
which can be expressed as

T=npE — i Zpk — M2 ZPRCI <Z pN0r>

kek kek kek
(16)

where the part 1 is the network benefit (the overall EE in Kbit/J),
the part 2, part 3, and part 4 are the cost functions in terms of
the unsatisfied latency, unsatisfied reliability, and unsatisfied
minimum data rate requirements, respectively. The coefficient
Wi, i € {1,2,3} are the weights of the last three parts, which
are used to balance the benefit and the cost.

Similar to the works [22]-[28], we adopt MDP to model the
intelligent resource management decision making in probabilis-
tic or deterministic environments based on the requirements
of systems [37]. Generally, MDP can be defined as a tuple
(S, A, P,r &), where the main elements of the MDP can be
defined as the following:

Agents: The RF AP, VLC APs, and active devices.

State space S: In the heterogeneous industrial network, the
network state can be defined as the subchannel occupy status
(idle or busy), the channel quality (SINR value), the service
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application types (normal services (low priority) and URLLC
services (high priority), and service satisfaction (reliability,
latency, and minimum data rate).

Action space A: In each time slot, the agent will take
the action a € A according to the current state s, where the
action includes the VLC or RF AP selection, the subchannel
assignment and the transmit power management.

Transition probability P: The transition probability P(s'|s, a)
captures the probability that the agent takes the action a € A
from the state s € S to a new state s’ € S.

Reward r: After taking one action, the agent will obtain an
immediate reward r from the environment where the learning
process is driven by the reward. We have built the reward
function shown in (16), which decides that the policy that the
agent finds. £ € [0, 1) is a discount factor.

Policy: The policy is a function that can be deterministic or
stochastic, which decides the the action selection with the given
state. Let m(s) denotes a policy: m(s) : S — A, which is a
mapping from the state space S to the action space .A.

In heterogeneous industrial network, each agent tries to
search the policy 7(s) to improve its immediate reward r. Let
V7™ (s) denotes the value function, which is also a cumulative
discounted reward, and it can be calculated by

V(s) = E; {Z vr(se, a)|so = s}

t=1

=F, {r(s,at) + 5// . (8|, a)V(s’)ds'} V)

The optimal strategy 7*(s) can be achieved by satisfying
the Bellman equation. V*(s) = max,ec4 V(s) [36]. Once the
optimal strategy 7*(s) is achieved by maximizing the cumu-
lative reward from the beginning, it implements the intelligent
resource management in heterogeneous industrial networks.

Q-learning is a well-known RL algorithm for policy learning
in wireless networks. Let ()(s,a) denote the Q-function of
the state—action pair (s, a), which is also the expected utility.
The value function V (s) is the maximum Q-function over the
feasible actions at the sate s. The Q-function can be updated at
the end of each time stage, which is

Qt+1(3t7at) = (1 - at)Qt(Styat)
+ oy [r(st,ar) + EVi(si41)] (18)

where «; € (0,1] is a time-varying learning rate. When the
learning rate a; admits Y ;- oy = oo and Y ;2| aF < oo, then
the Q-function Q;(s,a) will converge to the optimal value
Q*(s,a) by Vi(st) = max,ea Q¢ (st,ar) [38].

IV. PROPOSED DEEP PDS-ERT-BASED INTELLIGENT
RESOURCE MANAGEMENT

As illustrated in the above section, the policy can be nu-
merically learned by adopting the Q-learning, policy gradient
schemes, and deep Q-network (DQN) algorithms [38]. However,
Q-learning cannot deal with continuous state—action spaces and
the policy gradient may converge to the local optimal position.
Although DQN has the ability to handle the continuous control

Update Q($) and Q(s)|
based on PSD-ERT. [

Action strategy
a® selection

Observed sample
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Fig. 2. Deep PDS-ERT
management.

learning-based intelligent resource

problem under high-dimensional sensory inputs, its nonlinear
function approximator is known to be unstable or even to di-
verge. Moreover, it also needs a large number of training samples
to guarantee the training efficiency, all the abovementioned
factors may limit the application in IIoT networks.

To overcome the above problems, we propose a deep
PDS-ERT learning algorithm, as shown in Fig. 2, to accelerate
the learning rate, enhance the learning efficiency, and ensure
the learning stability toward the optimal policy for the resource
management in the heterogeneous industrial network. In details,
the agent can utilize the learned strategies from the historical
experience and the other agents, and integrate the PDS-learning
principle into the conventional DRL to learn the unknown
dynamics. The main procedures of the proposed PDS-ERT
learning-based intelligent resource management are presented
in the following subsections.

A. Experience Replay and Transfer

In RL, the policy strategy 7(s,a) determines the resource
management strategy in heterogeneous industrial networks. In
order to improve the learning efficiency, a modified experience
replay and transfer mechanism is presented for policy learning
by utilizing the historical knowledge or using the learned
knowledge from other agents.

1) Policy Strategy Selection: One of the important processes
of the experience replay and transfer mechanism is that how to
find the most useful learned policy strategy (e.g., network selec-
tion, subchannel assignment, and power management) from the
historical knowledge, or search one agent as the expert agent
to utilize the learned policy strategy from the expert. Instead of
blindly searching the expert agent or the historical experience
[31], the agent calculates the similarity level between the current
agent and other active agents (or the historical knowledge) by
evaluating the following three metrics: 1) service information,
which refers to URLLC services and the normal services; 2)
the device information, which includes the device position and
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mobility behavior; 3) the channel information, which contains
the channel SINR values and assignment indicators, etc.

The mentioned similarity can be calculated by applying the
Bregman ball method [38], where Bregman ball acts as the
minimum manifold with a central Z..,, and a radius R,,q. Any
information point Z,,; is inside this ball, and the agent searches
the information point which has the most strong similarity
with Z..,. The distance between any information point and
the central Z.., is expressed as [39]

B(ZcemRrad) = {Zpoi S/ D(Zpoia Zcen) < Rrad} (19)

where D(a, b) is the Bregman divergence [39], which is also the
manifold distance between two data points. Once the highest
similarity value between the learning agent and the expert agent
or historical information is achieved, the learning agent can
utilize the policy strategy.

2) Overall Action Strategy: As analyzed above, after finding
the most suitable historical policy or transferred policy strategy
by adopting the experience replay and transfer mechanism [40],
the agent utilizes the learned action strategy a°'" and its current
native action a"* to generate an overall action. Accordingly, the
overall action can be selected by

a®’ = gaert + (1 _ g)ana (20)
where ¢ € [0, 1] denotes the transfer rate, which will be reduced
after every learning step to gradually remove the effect of the
historical policy information on the new policy.

3) Experience Collection: In order to avoid storing the un-
reliable experience, after interacting with the environment, the
learned experience e; = (s, a;, ¢, 5;+1) with the best reward
is recorded in the relay memory. If the capacity of the relay is
full, the relay memory will make room for the new collected
experience by the following two steps:

1) Experience combination: We combine some historical
experience data into one data point if they have similar
functions by using the the Bregman ball concept [39].

2) Experience deletion: If the capacity of the memory is full
and the new collected experience needs to be stored in the
memory, the least used historical experience is deleted
from the memory, because the least used experience
makes a tiny contribution to the learning process.

B. Deep PDS-ERT Learning-Based Resource
Management

In this subsection, deep PDS-ERT is developed by incorpo-
rating the experience replay and transfer mechanism into the
deep PDS-learning algorithm. In particular, instead of directly
using the selected native action strategy a;® to update the
Q-function Q(s;), the historical or transferred action strategy
as*" can be utilized to exploit the extra information to improve
learning speed and efficiency. Similar to the classical PDS [27],
PDS-ERT can be described as the immediate network state that
is achieved after the known information occurs, but before the
unknown information takes place.

After achieving the corresponding overall action ay¥ by
(20), each deep PDS-ERT learning agent obtains an immediate
known reward 7y (s¢,a?") and then the state s; transits to the

post-decision state §; (5; € S with S being the set of PDS-ERT)
with a known transition probability Py (8;|s;, a?¥). Afterward,
PDS-ERT transits the current state S; to the next state s;.
with an unknown transition probability P, (s;4 1|5, a?") and an
unknown reward 7, (8;, af") feedback to the agent. Mathemat-
ically, the transition probability from the current state s; to the
next state sy with PDS-ERT admits

P(sca]se, a") = / Pu(sa1]r, 00 )P (Bilsr, a2 )ds
seS

(21)
The reward consists of the known and unknown rewards at ;
and sy

r(se,ap") = r(se,a") + / Pu(8ese,af )ra (5, af" )ds.

€S
(22)
Then, the PDS-ERT quality Q-function with the PDS-ERT
state—action pair (§;,a?") and the general Q-function can be
expressed as

Qt(ét,aﬁv) = 7’u(§t7afv)
+ / P (501180, a3 Wi (s111)ds (23)

st41€S8

Qt(sta a/?v) = Tk(§t7 agv)

+ / Py (351, 0804 (51, a8 ).
5e8

(24)

After obtaining the sample [s;,a;, (8, ad"), S, (S,
adv), st+1], the PDS-ERT quality value function is updated

Que1(5,a7) = (1 — ) Qs (31, 05")

+ oy [Tu (§ta a?v) +&Vi (5t+1)]- (25)

After obEaining Qf,+l in (25), @;+ can be updated in (24) by
replacing Q0 by Q1.

According to the above presented PDS-ERT, the deep PDS-
ERT learning algorithm is presented to solve the intelligent
resource management problem. As shown in Fig. 2, in the
proposed deep PDS-ERT learning algorithm, at each time
stage, after updating (23) and (24) on the overall action af"
and the observed sample (s, a;,7(s¢, at), si+1) by PDS-ERT,
the classical DQN is applied to approximate the Q-function
Q(st,a?",0;) of Q(s¢,a?") through minimizing the following
loss function at each time stage:

Li(0:) = {r(s,a") + ffglgj{Qt(Swha?inOt)

- Qt(stva?vv et)}2~

One key feature of using DQN is to sample the loss functions
in (26) at each iteration to reduce the computational cost for the
large-scale-state learning problems [25], [26]. The procedures
to implement DQN can be found in [25], [26].

The DQN parameters 6 can be achieved by applying the
gradient descent method, which is given by

OH—I = 015 + 59[ VLOSSt (0,5)

(26)

27)

where (g, is the learning rate of the DQN parameters 6.
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After that, each agent (RF AP, VLC AP, and device) will take
the action based on the selected policy strategy m(s;, 6¢), which
can be achieved by

(s, 0;) = arg max {Q:(st,a77,0)}. (28)

Theorem 1: The proposed PDS-ERT learning converges to
the optimal point of the MDP when the learning rate o; admits
Yo oy =ocand Y 2 af < oo.

Proof: If each action is executed under an infinite number of
iterations, in other words, the learning policy is greedy with the
infinite explorations, the function Q(s, @) and the policy strategy
7 (s, a) will gradually converge to the final points, respectively,
with a probability of 1 [38], [39]. Due to space limitations,
please see [24] and [27] for the full proof. [ |

We denote the sets of the historical state space and action
space in the memory as 8" and A’, respectively, and denote the
current state space and action space as S and A, respectively. At
one decision stage, the sample complexity of the action selection
and learning update of the classical Q-learning algorithm and
DQN are O(|S| x |A]) and O(|S|* x |A]) [23], [24], [27], [36],
respectively. As expected, the proposed deep PDS-ERT learning
algorithm requires the historical learning experience. Here, the
sample complexity of the action selection and learning update
of the proposed deep PDS-ERT learning algorithm is O(|S’|? x
|A'| +|S|? x |A]) [23], [27], [36], which is relatively higher
than that of the classical Q-learning algorithm and the DQN
learning algorithm.

In addition to the abovementioned extra computational com-
plexity, our proposed deep PDS-ERT learning algorithm needs
a memory of |S’| x |A'| to store the historical learning knowl-
edge, compared with the classical Q-learning algorithm and
the DQN learning algorithm [23],[24], [27]. The proposed
deep PDS-ERT learning algorithm-based intelligent resource
management in heterogeneous RF/VLC industrial networks is
shown in Algorithm 1.

C. Applications of the Presented Network Architecture
and the Proposed Deep PDS-ERT Learning Algorithm

For the proposed solution, in addition to the use in the energy-
efficient resource management for industrial IoT networks, it
can be also applied for the indoor energy harvesting, indoor
localization, and connection handover.

1) Indoor Energy Harvesting: In indoor industrial environ-
ments, there exists some energy-constrained devices, e.g., sen-
sors for monitoring, humidity, and indoor air quality, etc. Hence,
it is important to extend the lifetime of the devices due to their
limited energy budget. In our presented heterogeneous RF/VLC
industrial network, at each IoT or IIoT device, light energy
harvesting is achieved by using PD and the harvested energy is
used for sending data over the RF uplink [41].

2) Indoor Localization: Recently, VLC-based localization
has obtained the attractive attention, because it provides the
high positioning accuracy compared with the RF-based indoor
positioning systems [42]. Hence, VLC-based localization in our
presented heterogeneous RF/VLC industrial network is capable
of realizing the indoor localization or navigation with the high

positioning accuracy for [oT/IIoT devices in industrial networks
[40].

3) Network Handover: In the heterogeneous RF/VLC indus-
trial network, the presented heterogeneous network architec-
ture and the proposed deep reinforcement learning algorithm
have the ability to implement the vertical and horizontal han-
dover processes to guarantee both the connectivity and QoS
requirements of mobile IoT devices [43].

4) Safety-Critical Systems: Our presented heterogeneous
RF/VLC architecture can be applied for the vehicular
safety critical networks. Vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and vehicle-to-everything (V2X) message
exchanges are considered the preferred pattern for safety-critical
communication (e.g., in anticollision active systems). LED-
based VLC has been also proposed for V2V, V2I, and V2X
message delivery [44], which can facilitate the safe driving by
adaptive traffic signal control, intersection movement assistance,
speed management, and so on.

V. NUMERICAL RESULTS AND ANALYSIS

In this section, simulation results are conducted in MATLAB
2017a to evaluate the performance of our presented hetero-
geneous RF/VLC industrial network and the proposed deep
PDS-ERT learning-based intelligent resource management.

We consider an indoor industrial room with the area of
24 x 24 x 6 m, where 6 x 6 VLC APs (uniform distribution)
and a RF AP (locate in the center) are distributed at a height of
5 m. Additionally, the room is entirely covered by the RF AP.
A number of devices (K/2 IIoT devices and K/2 IoT devices)
are randomly distributed at four different heights (0.5, 1, 1.5,
and 2 m). The RF AP has the carrier frequency of 2.4 GHz,
the bandwidth of BRF = 10 MHz, the number subchannels of
NEF — 32 the maximum transmit power of 250 mW, the fixed
power consumption of PRF = 6.7 W, and the PSD noise of N}*¥
= 173 dBm/Hz [29]-[31]. Each VLC AP has the transmission
bandwidth of BY*C = 20 MHz (the available bandwidth is
10 MHz due to the Hermitian symmetry [29]-[31]), the number
of subchannels NVLC = 16, the maximum transmit electronic
power of 250 W, the fixed power consumption of Pyl¢ =
4 W and the PSD noise of N)''C = 107! A% /Hz. Each device
has the circuit power consumption of P, = 5 mW and the
maximum transmit power of PerI;ax = 30 mW. The LED
lamp semiangle at half power and the Lambertian emission
order are 60° and 1, respectively. The active area, the FOV, the
concentrator refractive index and the responsivity of the PD are
1cm?,90°, 1.5, and 0.5 A/W, respectively. The gain of the optical
filter is 1.

For the URLLC services, we set the maximum latency
threshold T,.x = 1 ms with T, + 73, = 0.1 ms and T} + T},
= 0.3 ms [35], the transmission reliability is 0.999 with each
message size being 250 bytes and the SINR threshold is 5 dB.
For the normal services, the minimum data rate is set as 3 Mbps
in downlink and 0.5 Mbps in uplink. Each time slot is 1 ms.
LOS blocking probability for both VLC and RF links is 0.05.
We set 11 = p1p = 10° and 3 = 2 x 10* to balance the benefit
and the costs in (16) [24], [27]. In RL, the discount parameter
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Algorithm 1: Deep PDS-ERT Learning-Based Intelligent
Resource Management.

Input: The discount factor &, IToT, and IoT environment
simulators and the samples of historical knowledge.
1: Initialize: The network state sy, value function V' (sg),
policy strategy 7(sp), and the DQN with
parameters 60;
2: foreachtimestept=0,1,2,..do

3: The agent observes the state s;;
4: if the agent applies new services or has poor
performance then

5: Search the expert agent with the highest
similarity;

6: Obtain the transferred action strategy a$™* from
the expert;

7. Select the overall action by (20) and update the
transfer rate g;

8: Perform deep PDS-ER from step 10 to step 17;

9: else

10: The agent selects the action a;'* with a probability €
or choose a}* by satisfying
af® = argmax Q;(s¢,a, 0);

acA

11: Search the historical action a§** with the highest
similarity from the experience replay memory;

12: With a}* and a§"", calculate the overall action ay¥
by (20);

13: After executing action ay", the agent gets the reward
r(s¢,a?") and observes a new state s;; | from the
environment;

14: The agent stores the experience

er = (s¢,a8v,r(st,afv), s;41) into its replay
memory. If the capacity of the relay memory is full,
the least used historical experience is dropped;

15: Observe PDS tuple (s¢, ", 8¢, 7r(st,a?Y), St41), the
agent updates the Q-function Q, (8,a9") and
Q1 (s¢,a?Y) by (23) and (24), respectively;

16: Update the DQN parameters 6, by (27);

17: Reset the DQN evaluation network by 0;,1=60;;

18: end if

19:  end for

20: Output: RF/VLC network selection, subchannel

assignment and power management.

¢ = 0.98 and the learning rate a; = 0.02. The deep neural
network (DNN) has three hidden layers with each hidden layer
being with 50 neurons.

In this section, we present the performance comparisons of
the following industrial networks: 1) our presented heteroge-
neous RF/VLC industrial network (denoted by RF/VLC); 2) the
network service is performed using two RF APs (denoted by
RF/RF) and the two carrier frequencies are 2.4 and 5 GHz,
where the network total bandwidth is 20 MHz to ensure a
fair comparison with the RF/VLC network. Moreover, we also
compare the performance of our proposed deep PDS-ERT
learning algorithm-based intelligent resource management with

the following existing algorithms: 1) deep PDS learning [24]
(denoted by Deep PDS); 2) Q-learning algorithm with knowl-
edge transfer [31] (denoted by QKT-learning); 3) decomposing
the optimization problem into two subproblems: a) network
selection and subchannel assignment, b) transmit power man-
agement, and solve it iteratively in a centralized way, similar to
[29] (denoted as Baseline 1).

Fig. 3 shows the EE per device, the probability of satisfied
normal services, the average URLLC latency per packet and the
reliability of URLLC services against the device density when
the packet arrival rate is A = 0.12 packets/slot/per IIoT source.
As seen in Fig. 3(a), the higher the number of devices, the lower
EE per device achieved, since the ICI becomes more pervasive
in the VLC & RF networks which limits the data rate improve-
ment, and the power consumption as well as the subchannel
assignment increase in the VLC & RF networks under the
high-density scenario of devices, leading to the EE degradation.
From Fig. 3(b)—(d), the probability of the satisfied normal ser-
vices and URLLC reliability decrease and the URLLC latency
increases as the number of devices increase. This is because
that under the fixed power and bandwidth resource, the large
number of services need to be completed and different QoS
requirements should to be guaranteed, the network may fail to
support all the services’ requirements, leading to bring down
the performance in the high-density scenario. However, the
presented heterogeneous network (RF/VLC) still outperforms
the RF-RF network, and the proposed deep PDS-RET learning
algorithm achieves the best performance among the existing
algorithms.

We study in Fig. 4 how the performances vary with the packet
arrival rate (1) when K = 160. We can observe that the EE
value increases with A to a peak due to the increased network
throughput when more packets transmit in the network. The
power consumption also increases during this process, but the
improvement rate of the network throughput is quite bigger than
that of the power consumption, leading to EE enhancement.
After that, the EE value slightly declines since continuing
to increase A will increase frequent connections and waiting
time, which leads to more power consumption. In this case,
the throughput enhancement fails to compensate the cost of
consuming more total power, which slightly decreases the EE
performance. It is worth noting that compared with RF/VLC, the
performance of RF/RF is much sensitive to A due to the limited
bandwidth. Even the decreased performances happen with the
increase of X, our proposed deep PDS-RET learning algorithm
still achieves the best performance.

Let us now quantify the effect of the blocking probability of
RF&VLC links on the network performance, when K = 160
and A =0.12 packets/slot/per IIoT source, as shown in Fig. 5.
As seen in Fig. 5(a), when the blocking probability is increased,
the EE performance obviously declines in RF&VLC networks
while it is slightly reduced for RF/RF networks. This is because
the blocked links in the VLC network unsuccessfully provides
the high transmission data rate, while the effect of blocked links
can be negligible in the RF network. From Fig. 5(b)—(d), the
probability of the satisfied normal services and URLLC reli-
ability decrease, and the URLLC latency increases during this
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process, because the blockage degrades the received SINR value
results in failing to guarantee the different QoS requirements of
devices. However, for all blocking probabilities, our proposed
solution still outperforms other solutions (network architecture
and algorithms).

In Fig. 6, we show the learning process of the RL algo-
rithms in terms of the reward when K = 120 and A = 0.12
packets/slot/per IIoT source. Clearly, the deep PDS-RET and
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(d

Performance evaluations and comparisons versus blocking probability of RF&VLC links.

QKT-learning algorithms achieve the faster convergence than
that of the deep PDS learning algorithm, but QKT-learning
has the lowest performance in large-scale networks. The deep
PDS-ERT learning algorithm achieves the best reward value,
the fastest convergence and the most stability (less fluctuations)
by utilizing the historical experience strategy to improve the
learning efficiency and convergence speed, compared with other
RL algorithms.
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From Figs. 3-6, the proposed deep PDS-RET learn-
ing algorithm-based heterogeneous RF/VLC can effectively
meet the energy-efficient communications, guarantee the strict
URLLC requirements and ensure the high data rate demands at
different scenarios in industrial networks.

VI. CONCLUSION

In this article, we presented a heterogeneous RF/VLC net-
work architecture for wireless industrial networks to support
different QoS requirements [ranging from high reliability and
low latency (URLLC requirements) to high data rates] of IloT
and IoT devices. Based on the heterogeneous industrial net-
work, we formulated an energy-efficient resource management
decision-making problem (joint network selection, subchannel
assignment, and power management) as a MDP, and a new deep
PDS-ERT learning algorithm was proposed to learn the optimal
policy for the intelligent resource management in heterogeneous
industrial networks, which accelerates the learning rate and
improves the learning efficiency. Simulation results verified the
effectiveness of the presented heterogeneous RF/VLC industrial
network and also showed that the proposed deep PDS-ERT
learning algorithm outperforms other existing algorithms.
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